
Part 3 – User Written PML Model

Units: When using WNL-Phoenix Models, if units are used, the units are required to be entered
properly for both concentration and dose. For example, if there are units assigned to observations,
but units for dose are missing, then the results may be erroneous; it is recommended to have
dose units set to the same as the mass part of the concentration variable..

Zero Order 1 Compartmental Model

1. Right-Click on ‘Copy of Sheet1’>Send To>WNL-PHX Modeling>Phoenix Model.
2. View the Setup tab of the Phoenix Model object.

3. In the Structural tab, select 1 Compartmental Intravenous model with Micro Parameterization.

4. Select ‘Main (Copy of Sheet 1)’ listed in the Setup tab and map the following variables:

� Time � Time

� Cp � Cobs

5. Either map Dose from the previous WNL classic model’s “Dosing used” or create an internal
worksheet with a dose of 20000.

6. select the checkbox for ‘Population ?’ in the Structural tab.

7. Select Additive for the error model. (analogous to uniform weighting in classical WinNonlin �
(Cpred + eps)

8. Click straight to the button ‘Edit as Textual Model >>’. Click ‘Yes’ when the DME
Confirmation message window appears.

9. Click on Model listed in the Setup tab and edit the Textual Model as PML Code, only the two
lines in bold need be edited:

test(){

 # This is the PK model.
 deriv(A1 = -Ke * A1)
 C = A1 / V

 # This declares that dosing is to compartment A1,
 # and it is treated as zero-order of estimated duration.

 dosepoint(A1, duration = Tabs)

 # An alternative would be to instead model to find the zero-
order rate

dosepoint(A1, rate = Zrate)

 # this seems to be more stable, QC 11949, PHX Notification # 13.

 # This is an additive error model

 # Set to 10 as initial estimate of epsilon i.e. 10% of the
observed conc
 error(CEps=10
 observe(CObs = C+CEps)

 # This is the parameter model.
 # You could incorporate random effects, because they are treated
 # as zero when doing individual modeling.
 stparm(V = (tvV))
 stparm(Ke = (tvKe))
 fixef(tvV = c(, 100,))
 fixef(tvKe = c(, 1,))

 fixef(Tabs = c(, 4,))
}

Note on Epsilon initial estimate.

The conc data goes up to 87, so it is unlikely that eps could be as low as 1 (10% residual

errors are a good rule of thumb, and it is usually better for the algorithm to guess ‘high’

on the initial eps rather than be too low, so all data points come in with reasonably

similar initial weights.

10. Execute the Phoenix Model Object.

11. Review Output

PLOTS (PRED plots will be similar to IPRED plots since this is individual modeling)

� DV vs. IPRED

� DV, PRED, IPRED vs IVAR

� DV, PRED, IPRED vs. IVAR Lattice

� DV, PRED, IPRED vs. TAD

� DV, PRED, IPRED vs. TAD Lattice

� IWRES vs. IPRED

OUTPUT DATA
� Overall

� Residuals

� Theta

� Theta Covariance

Table statements for predicted curves
12. You may notice that the default PML code gives a ‘jagged’ point to point curve, this is because

plot generated by the PML code only uses the original time points, unlike WinNonlin classic
models which predicts over a smooth grid of time automatically. This is because WinNonlin is
designed to support only individual modelling whilst Phoenix may also perform NLME i.e.
Population analyses. In these analyses individual prediction plots of thousands of points per
profile could be prohibitive in terms of performance.

13. To generate a smoother prediction curve in Phoenix you should ask for a table with fine grid
time points under Run Options, of seq(0,4,0.1), seq(4.5,12,0.5)

The syntax follow S-plus conventions and the seq function

Seq(from=, to=,every)

It also accepts a vector of times concatenated with the c function e.g:

c(seq(0.5,2,0.01),seq(3,24,0.05)) or c(1,2,3,4,5)

Note that this Table is only needed when fitting, with simulation where the WinNonlin Classic input
of from to and Npoints still applies.

14. Use this output to generate an additional the plot

OPTIONAL: Notice that with an additive error model, observe(CObs = C+CEps), the parameter
estimates have better precision (CV%) compared to the results from the ASCII model. Try a
different error model, such as the multiplicative error model, observe(CObs=C*(1+CEps)), and
compare results.

Generally, the WNL Classic engine and the Phoenix Model Object Naïve Pooled engine will yield
very similar results, that is, when the fits are good (standard errors are small or the confidence
intervals around the estimates are narrow). They won’t yield precisely the same values, but in our
internal testing, they were typically within half of a percent

The PHX naive pooled results are true maximum likelihood estimators, whereas the WNL classic
results are based on an iterated weighted least squares algorithm that usually comes close to a
maximum likelihood solution when the fits are good, but may be significantly different for poor fits.
For simple additive error models the results should be identical but will usually differ slightly when
other error models are used but the fits are reasonably good.

Note this is only true if the parameters are not at a bound – if a final parameter value is at or near
a bound, the results are no longer maximum likelihood or near maximum likelihood estimators)

 If the fits are poor, then the Phoenix maximum likelihood parameters may differ considerably from
the WNL Classic iterated weighted least squares parameters.

Additive Error

Multiplicative

Error

ASCII Model

MODEL

remark - define model-specific commands

COMMANDS

NFUNCTIONS 1

NPARAMETERS 3

PNAMES 'VF', 'Tabs', 'Ke‘

PUNIT ‘L’ , ‘h’ , ‘1/h’

NCON 1

END

remark - define temporary variables

TEMPORARY

T=X

Dose=CON(1)

Finf=Dose/Tabs

END

remark - define algebraic functions

FUNCTION 1

ASCII PML

