

Main TMDD Assumptions

- The drug-target binding is a simple one-to-one binding process with only one type of drug-target complex produced
- The drug is highly specific and does not bind to any other target
- The drug-target binding occurs only in the central but not in the peripheral (tissue) or depot (lymphatic system) compartments
- Free drug distribution to tissues is linear and is described by intercompartmental rate constants
- Recycling of the target does not occur in the elimination process of the drug target complex
- Influence of the immune response (such as appearance of binding and/or neutralizing antibodies) is negligible
- Target production and degradation rates are constant and do not depend on the drug or target concentrations

CERTARA

Para	meter	Customary units	Re-normalized units	Conversion Facto	
Dose		1-500 mg	10-3000 nmol	1 mg = 6.7 nmol	
CL. Q		10-100 mL/hr	0.24-2.4 L/day	1 mL/hr=0.024 L/day	
V _g , V _t			3-6 L		
F _{SC}			0.3-1		
k,			0.2-1.5 1/day		
L SC			1-8 days		
k _{on}		104 - 106 1/(Ms)	1-100 1/(nmol/L)/day	10 ⁵ /(Ms) = 8.64	
k -		10 ⁻⁶ -10 ⁻³ 1/s	0.1-100 1/day	10 ⁻³ 1/s = 86.4 1/day	
No=k.e/k.e	ogrkon soluble		1-100 nmol/L		
k _{iel}		similar to ket	0.01-0.2 1/day		
-	membrane	similar to kdee	5-100 1/day		
k _{on}			1-2 nmol/L/day		
k _{dez}			1-150 1/day		
Raas- kas/	k _{dee}	1-10 ⁴ pmol/L	10 ⁻³ -10 nmol/L		

TeGenero	Disaster – Lack of TMDD Understanding
	WIKIPEDIA
	The crucial pitfall to avoid when scaling protein drugs is target binding and receptor occupancy. A tragic example of this is the case of TGN1412, a monoclonal antibody directed against T improduces which produced multi-organ failure in six healthy volunteers (ESG_2005); this serious outcome led to the introduction of the MABEL. The MRSD calculated by the conventional allometric approach was 0.1 mg kg ⁻¹ . When receptor theory was used to investigate this does, it was found that 0.1 mg kg ⁻¹ would elicit greater than 90% receptor occupancy. In this situation, not only was the pharmacodynamic effect unacceptably high, producing a cytokine storm, but the increased receptor occupancy could have altered the pharmacokinetics of the antibody by decreasing the clearance, thereby further increasing the peak concentration of the antibody in the plasma and prolonging its effect. There are
	Inary resoluts to be rearred infort us taggedy, but all important increase, the pharmacodynamic and pharmacokinetic response to further dose escalations becomes non-linear; in this situation, allometric scaling, which was used for TGN1412, will not work. It is important to determine in preclinical studies whether target binding occurs and, if so, a MABEL must be derived by using models that account for target binding. The MABEL is useful for protein drugs
CERTARA	because it defines a dose at which receptor occupancy is low.

	1	Sabus Basulta Varification								
		Main (PK27 data)	a 🔉 🔊	×						
All of these	Model PDosing		Vew Source PK27_55d.Data PK27_data							
Deputation		Parameters (Model L parallel lin	Mappings							
Population		Parameters Mapping		None		Sort	ID	A1	Time	CObs
mode due to		O Handom Ellects	Time	C		C	C	C	(C
simultaneous			Dose	C		0	0	۲	0	0
fitting of			Cp	С		C	С	С	C	
multiple dose			R	()		0	0	0	0	0
levels.		, ,	Mapping Ou	tput Sort Ord	er					
However we	$\left(\right)$	Population? Structure	Parameters In	put Options	Initia	l Estimates	Run Options	Model Text	Plots no warnin	gs
will use the		Tune PK .						Set WNL Model		Edit as Graphi
naïve pooled		Parameterization: Absorption:	Num Compa	tments:	Рагате	ters: Sta	tements:			
mode as we		Cearance V Intravenous	• 2		v	der	v(A1 = - Vmax * C)	(Km + C) - Cl2 * (C	- C2))	
only have 1		Saturating? Ifag? Elm. Cpt.? Infusions cossible?			V2 deriv(A2 = Cl2 * (C - C2))					
subject per					Km	dos	dosepoint(A1)			
dose.		Sequential PK/PD?			Vnax	с.	A1/V			
		Residual Error:			02 C2 = A2 / V2					
		C 1001 - 100	BOL?			erc	error(CEps = 1)			

mated TI	netas for	the Thr	ee Mode	ls				
Note how the and I R) are	e precision fo	or paramete	rs involving	the receptor	r improve as	additional d	ata (F	
		Name						
	Model	Amt L	Model	Amt L R	Model A			
Parameter	Estimate	CV%	Estimate	CV%	Estimate	CV%		
v	0.0503	1.59	0.0506	1.08	0.0512	0.85		
Vt	0.101	2.19	0.102	1.46	0.101	1.57		
CI	0.00101	1.09	0.00101	0.87	0.000999	0.96		
Cld	0.00290	3.44	0.00287	2.95	0.00291	3.39		
kon	0.101	17.84	0.0927	1.65	0.0968	1.59		
koff	0.000895	29.78	0.000763	12.52	0.00124	4.15		
keRL	0.00187	26.18	0.00169	20.60	0.00311	1.64		
R0	11.9	4.09	11.9	1.80	11.8	0.62		
kout	0.00890	5.46	0.00900	2.60	0.00910	1.57		
stdev0	0.0422	11.36	0.0429	11.53	0.0499	11.52		
stdev1			0.0519	13.44	0.0552	14.12		
stdev2					0.0212	12.83		
RAO								

Conclusions

- Due to identifiability problems one cannot estimate all of the TMDD
- parameters with adequate precision with only ligand dataOne should try to determine the dose range that enables one to see the
- distinctive TMDD profile (bending down and then back)Although not attempted here, If one only has ligand data another alternative
- is to fit the TMDD model but fixing one or more of the parameters (such as k_{on}, k_{off}, k_m) to estimates derived from preclinical data

CERTARAO