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Abstract. In this paper, we derive explicit expressions for the concentrations of ligand L,
target R and ligand-target complex RL at steady state for the classical model describing target-
mediated drug disposition, in the presence of a constant-rate infusion of ligand. We demonstrate
that graphing the steady-state values of ligand, target and ligand-target complex, we obtain
striking and often singular patterns, which yield a great deal of insight and understanding about
the underlying processes. Deriving explicit expressions for the dependence ofL,R andRL on the
infusion rate, and displaying graphs of the relations betweenL,R andRL, we give qualitative and
quantitive information for the experimentalist about the processes involved. Understanding
target turnover is pivotal for optimising these processes when target-mediated drug disposition
(TMDD) prevails. By a combination of mathematical analysis and simulations, we also show that
the evolution of the three concentration profiles towards their respective steady-states can be
quite complex, especially for lower infusion rates. We also show how parameter estimates
obtained from iv bolus studies can be used to derive steady-state concentrations of ligand, target
and complex. The latter may serve as a template for future experimental designs.
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INTRODUCTION

In recent years, target-mediated drug disposition has
become an important topic in drug discovery and clinical
development (cf. Sugiyama et al. (1), Levy (2), Mager and Jusko
(3), Gibiansky et al. (4), Lowe et al. (5), Wagner (6), and also,
historically developed for enzyme expression, Michaelis and
Menten (7)). Since it combines such diverse processes as drug
binding to a target and forming a complex, target turnover, non-
specific drug clearance and drug-target complex internalisation,
each with its own kinetic process, even the simplest, one-
compartment model, such as shown in Fig. 1, displays a rich and
complex scala of disposition patterns.

This complex disposition pattern in plasma is often
captured after intravenous bolus dosing. In Fig. 2, we show
schematically the different phases of a compartmental model
involving a circulating target and complex (cf. (8)).

In the first phase (A), drug and target equilibrate (often
rapidly). During the second phase (B), the target route is
saturated and drug is mainly eliminated via a first-order non-
specific clearance mechanism. During the third phase (C), the

target is partly saturated and drug is eliminated via amixed-order
process, and in the final, fourth phase (D), the drug concentration
is so low that elimination is a linear first-order process with non-
specific as well as elimination through the drug-target complex.

The ubiquitousness of this model in practical situations (cf.
(9–15)), as well as the elegance of its structure, has attracted
attention from a practical as well as from a theoretical
perspective. Important issues included (i) reduction of the
model on the basis of the assumption that one or several of the
processes have quickly reached equilibrium (cf. (4,16,17)) and
(ii) parameter identification on the basis of characteristic
features of ligand versus time data sets (cf. (8)) and, to a lesser
extent, from ligand-receptor complex data sets.

Hitherto, the main focus has been on the analysis of data
sets obtained after a rapid intravenous injection and the analysis
of the different phases exhibited by the ligand versus time curves
(cf. Peletier and Gabrielsson (8,18)). These disposition curves
work well when high-resolution data are available at two or
more doses showing phases (A) to (D) (cf. Fig. 2). However, the
bioanalytical method may be a limiting factor if the limit of
quantification falls above the terminal phase, and consequently
reducing the disposition characteristics.

In this paper, we establish the relationships between
target R and complex RL as a function of ligand L or input of
ligand In. This allows us to directly assess the exposure of
ligand (or input rate) that is required to suppress target to a
certain extent or build up of target-ligand complex. As an
alternative to iv bolus dosing, we also explore the potential
use of constant-rate infusions.
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METHODS

In the event of a constant-rate infusion protocol, graphs
of steady-state values of ligand Lss, receptor Rss and ligand-
receptor complex RLss versus the infusion rate In display
interesting characteristics. We present analytical expressions
for typical properties of these graphs, such as the height and
the slope of the different segments and sharp transitions.
These explicit expressions provide an excellent diagnostic
tool for studying the impact of the different parameters in the
target-mediated drug disposition (TMDD) system.

Basic Model

We focus primarily on the basic, one-compartment
version of the TMDD model shown in Fig. 1 (left). In
mathematical terms, it is given by the system of differential
equations.

dL
dt

¼ In
V

− konL⋅Rþ koffR L −
Cl Lð Þ
V

L

dR
dt

¼ ksyn − kdeg R − konL⋅R þ koffRL

dRL
dt

¼ konL ⋅ R − koff þ ke RLð Þ
� �

R L

8>>>>><
>>>>>:

ð1Þ

where L, R and RL denote the concentrations of ligand (or
drug), target (or receptor) and ligand-target complex, In

denotes the infusion rate of ligand and V denotes the volume
of the compartment. The rate constants kon and koff denote
the second-order on and first-order off rate of ligand-receptor
binding and Cl(L) the non-specific clearance of ligand from
the central compartment. Through internalisation, ligand-
target complex leaves the system according to a first-order
process with a rate constant ke(RL). Finally, target synthesis
and degradation are modelled by, respectively, zeroth- and
first-order turnover rates ksyn and kdeg.

Analysing this model, it becomes clear that ligand
infusion and target synthesis can be viewed as parallel
processes, and so do non-specific ligand clearance and
internalisation of ligand-target complex. Therefore, these
processes are best described by quantities of equal dimension.
Thus, we define the scaled ligand infusion rate kinfus and non-
specific elimination rate constant ke(L):

kinfus ¼ In
V

and ke Lð Þ ¼
Cl Lð Þ
V

ð2Þ
In the presence of a constant-rate infusion of ligand In,

the ligand- receptor- and ligand-receptor concentrations
converge towards their steady-state concentrations Lss, Rss

and RLss. It turns out that the graphs of these steady-state
concentrations versus the infusion rate In have a complex
structure and reveal a great deal about the system and its
different sub-processes.

Typically, these graphs are linear for high and low
infusion rates and exhibit, an often sharp, transition between
these regimes. We obtain analytical expressions for the height
and the slope of these different segments and the infusion
rate where the graphs show a transition. These explicit
expressions provide an excellent diagnostic tool for studying
the impact of the different parameters in the TMDD system
(1).

An important determinant in assessing the dynamics of
complex systems is the time it takes to reach, say 90 or 95%
of the steady-state value of the concentration when prior to
the initiation of the infusion, the system is at baseline, i.e.
when

L 0ð Þ ¼ 0; R 0ð Þ ¼ R0 ¼de f ksyn
kdeg

; RL 0ð Þ ¼ 0 ð3Þ

Evidently, this time will depend on the steady-states concen-
trations Lss, Rss and RLss, which in turn depend on the
infusion rate In.

It is well known that conservation laws and balance
equations, in this case of ligand and target, are useful in

Fig. 1. Schematic description of the one-compartment (left) and the two-compartment (right) model for target-mediated
drug disposition involving ligand (L) binding target or receptor (R), yielding ligand-target complex (RL), target turnover,
non-specific ligand elimination and ligand-complex internalisation. The right-hand model is described in Appendix A

Fig. 2. Typical pattern for a ligand versus time graph in target-
mediated drug disposition after an iv bolus dose. The concentration
of the ligand is displayed on a logarithmic scale. Note that linear first-
order clearance prevails at high concentrations, when the target is
saturated, and at low concentration, when both non-specific and
target clearance are involved
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analysing the TMDD system ((3,4,8)). The total amount of
ligand (Ltot) and of receptor (Rtot), given by

Ltot ¼ Lþ RL and Rtot ¼ Rþ RL ð4Þ

are seen to satisfy the following pair of equations:

dLtot

dt
¼ kinfus−ke Lð ÞL−ke RLð ÞRL

dRtot

dt
¼ ksyn−kdegR−ke RLð ÞRL

8><
>: ð5Þ

in which, conveniently, the on and off rates of ligand-receptor
binding, kon and koff, no longer appear.We recall from (8) that the
total receptor concentration is limited, irrespective of the amount
of ligand supplied. Specifically, it was shown that for all t ≥0,

Rtot tð Þ≤max R0;R�f g where R� ¼de f ksyn
ke RLð Þ

¼ kdeg
ke RLð Þ

R0 ð6Þ

Thus, R* is the universal maximum of the total target
concentration; it is a fundamental target concentration, such
as the baseline target concentration R0.

RESULTS

Equilibrium Relationships

We use the disposition parameters obtained from a bolus
experiment (cf. (8)) in order to predict the equilibrium
relationships between ligand, receptor, ligand-receptor com-
plex and infusion rate. They are listed in Table I below.

In order to acquire an impression of the way these
concentrations depend on the infusion rate, we show graphs
of these equilibrium concentrations versus the infusion rate in
Fig. 3 for the parameter values listed in Table I. In the left
panel, the concentrations are given on a linear scale; in the
right panel, they are given on a log-log scale.

These graphs clearly reveal some of the intrinsic properties
of the TMDDmodel: a two-phase ligand curve which displays a
linear concentration versus infusion rate relationship at low and
high infusion rates joined by an intermediate range of infusion
rates in which the nonlinear contribution of the target route
kicks in (compare with Fig. 2). When clearance through the
target route becomes saturated, as kinfus = In/Vapproaches ksyn,
the ligand concentration increases disproportionately with
increasing infusion rate. At high infusion rates, disposition is
linear again and there exist proportionality between ligand
concentration and infusion rate (except for a shift). This

behaviour is not intuitive by observing the ligand
concentration-time course after a bolus dose.

As shown in Fig. 3, the steady-state ligand concentration
increases monotonically with increasing infusion rate. There-
fore, it is also possible to view Rss and RLss as functions of the
ligand concentration Lss. The graphs of these functions are
shown in Fig. 4 with ligand concentration on a logarithmic
scale and the concentrations of receptor and ligand-receptor
complex on a linear scale. This is done for two data sets: on
the left for data taken from Peletier and Gabrielsson (8) and
Gabrielsson and Weiner (15) given in Table I, and on the
right for data from (19), given in Table II:

In both graphs, the receptor concentration Rss approaches
the baseline receptor concentration R0 as the ligand concentra-
tion drops down to zero and vanishes when the ligand
concentration becomes large. Similarly, the complex concentra-
tion RLss first increases and then approaches a plateau when
ligand concentrations become large. The ligand concentration
L50 at which half of the maximum value of receptor as well as of
complex is attained appears to be close to 0.1 mg/L.

Note that in the two figures, the order of R* and R0 is
different. As we see from (6), the relative magnitude of R*

and R0 is determined by the two receptor elimination rate
constants: kdeg and ke(RL). In Table I, kdeg > ke(RL) and hence
R∗ >R0, and in Table II, it is the other way around.

Explanations of the Graphs in Figs. 3 and 4

In order to explain and quantify some of the properties
of the curves for Lss, Rss and RLss shown in Figs. 3 and 4, the
equations for the total amount of ligand and receptor (4)
offer a good starting point. The two equations of the system
(5) yield the following relations between the steady-state
concentrations:

Lss ¼ 1
ke Lð Þ

kinfus−ke RLð ÞRLss
� �

Rss ¼ 1
kdeg

ksyn−ke RLð ÞRLss
� �

8>><
>>:

ð7Þ

We see that as the ligand-receptor concentration RLss

increases, the receptor concentration Rss decreases. However,
at some point the receptor pool is exhausted. Since clearly
Rss≥ 0, the second equation of (7) implies that

RLss≤R� ¼ ksyn
ke RLð Þ

ð8Þ

Table I. Parameter Values Used in Simulations

ke(L) kon koff ksyn kdeg ke(RL) R0 R* V

0.0015 0.091 0.001 0.11 0.0089 0.003 12 37 0.05
h−1 {(mg/L)h} h−1 (mg/L)/h h−1 h−1 mg/L mg/L L/kg

Note that for these values, the dissociation constant is Kd ¼de f koff=kon ¼ 0:011 mg=L and the Michaelis-Menten constant Km ¼de f

koff þ ke RLð Þ
� �

=kon ¼ 0:044 mg=L
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Therefore, when Rss has dropped to zero, no further rise
in complex formation is seen and the concentration remains
at a plateau RLss≈R∗ for larger infusion rates.

Thus, if the therapeutic (or pharmacodynamic) response
depends on complex formation (complex exposure), increasing the
ligand infusion rate much above the endogenous target synthesis
ksyn rate will no longer increase the complex concentration.

Because of their complex and non-trivial structure, the
graphs shown in Figs. 3 and 4 can reveal a great deal of
information about the processes involved in the TMDD
model. Much of this information can be extracted from the
explicit expressions that can be derived for Lss, Rss and RLss.
Evidently, thanks to the two relations in (7), it is sufficient to
derive an expression for RLss. This is done by equating each
of the right hand sides of the equations in the system (1) to
zero. Then, using (7) to eliminate the steady-state values of L
and R, one obtains a quadratic equation in RLss. Solving this
equation yields the expression:

RLss ¼ 1
2ke RLð Þ

kinfus þ ksyn 1þ θ⋅κmð Þ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kinfus þ ksyn 1þ θ⋅κmð Þ� �2−4kinfusksyn

q� �
;

ð9Þ
in which

kinfus ¼ In
V

; θ ¼ ke Lð Þ
ke RLð Þ

; κm ¼ Km

R0
and Km ¼ koff þ ke RLð Þ

kon

ð10Þ

A detailed derivation of this formula for RLss can be
found in Appendix B.

Expressions for Small and Large Infusion Rates

By an elementary computation we deduce from the
expression given in (9), the following limiting behaviour for
RLss when kinfus becomes large and when it becomes small1:

RLss →
ksyn
ke RLð Þ

¼ R� as kinfus → ∞

RLss ∼
1

ke RLð Þ

R0

R0 þ
ke Lð Þ
ke RLð Þ

Km

⋅kinfus as kinfus → 0

8>>>>><
>>>>>:

ð11Þ

Clearly, as more ligand is supplied to the system, more of
it binds to the receptor and eventually, the free receptor pool
is consumed. According to (7), (8) and (11) this means that
RLss approaches R* from below as the ligand concentration
Lss increases.

For small values of ligand, i.e. when kinfus is small, ligand
is eliminated directly through non-specific elimination (ke(L))
and through internalisation of the receptor (ke(RL)). Evi-
dently, when the non-specific route dominates, i.e. ke(L) is
large, there will be little ligand left to bind to the receptor and
RLss will be small. In the limits shown in (11), we see this
trend confirmed and quantified. Conversely, when the non-
specific route is limited, most of the elimination takes place
through internalisation, with its associated rate constant
(ke(RL)). Similarly, when kon is large and hence Km small,
most of the ligand rapidly binds the receptor and will be
eliminated through internalisation, as shown in Eq. (11).

For Lss, the first equation of (7), in combination with
(11), yields:

Lss ∼
1

ke Lð Þ
kinfus−ksyn
� �

as kinfus → ∞

Lss ∼
1

ke Lð Þ

ke Lð Þ
ke RLð Þ

Km

R0 þ
ke Lð Þ
ke RLð Þ

Km

⋅kinfus as kinfus → 0

8>>>>>>><
>>>>>>>:

ð12Þ

and for Rss, the second equation of (7) and (11) yields:

Rss → 0 as kinfus → ∞

Rss ∼R0 1−
R0

R0 þ
ke Lð Þ
ke RLð Þ

Km

⋅kinfus

0
BBB@

1
CCCA as kinfus → 0

8>>>><
>>>>:

ð13Þ

In order to understand the ligand curves in the right
hand panel of Fig. 3 where Lss and kinfus are both plotted on a
logarithmic scale, we translate the limits in (12) to the
logarithmic coordinates. This yields the following limits:

ln Lssð Þ ∼ ln kinfusð Þ − ln ke Lð Þ
� �

as kinfus → ∞

ln Lssð Þ ∼ln kinfusð Þ−ln ke Lð Þ
� �

−ln 1þ ke RLð Þ
ke Lð Þ

R0

Km

	 

as kinfus → 0

8<
: ð14Þ

Thus, at the high and the low end, the logarithmic ligand
graph of Fig. 3 approaches parallel straight lines L+ and L−

Fig. 3. The steady-state concentrations Lss, Rss and RLss graphed versus the infusion rate
kinfus, on a linear scale (left) and on a log-log scale (right) for parameter values taken from
Table I. (MatLab code: tmdd5infus1a.m)

1 f(x)∼A ⋅ g(x) as x→ 0 (∞) if: f(x)/g(x)→A as x→ 0 (∞).
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with slope +1: for small ligand, it is L− and for large ligand, it is
L+. By (14), the line L− is seen to be lower than L− by an amount
ΔL given by

ΔL ¼ ln 1þ ke RLð Þ
ke Lð Þ

R0

Km

	 

ð15Þ

The lines L+. and L− with slope +1 and the shift ΔL between
them are illustrated in Fig. 5.

Singular Behaviour at the Transition

An interesting feature of the three curves for Lss, Rss and
RLss in the left panel of Fig. 3 is that they are approximately
piecewise-linear with a kink in each of them, close to the
infusion rate where Rss vanishes.

The reason for this special shape is the fact that for the
parameter values given in Table I, the dimensionless constant
κm =Km/R0 is very small, and the two elimination rates ke(L)
and ke(RL) are comparable (κm = 0.0037 and ke(RL) = 2ke(L)).
Expanding the expression for RLss in (9) in terms of small
values of κm, we obtain

RLss κmð Þ→
kinfus
ke RLð Þ

if kinfus < ksyn

ksyn
ke RLð Þ

if kinfus > ksyn

8>><
>>:

as κm → 0 ð16Þ

Details of the derivation of the two limits are given in
Appendix B.

By the expressions (7) for Lss and Rss in terms of RLss,
this implies that as κm→ 0,

Lss κmð Þ→
0 if kinfus < ksyn
1

ke Lð Þ
kinfus−ksyn
� �

if kinfus > ksyn

8<
: ð17Þ

and

Rss κmð Þ→
1

kdeg
ksyn−kinfus
� �

if kinfus < ksyn

0 if kinfus > ksyn

8<
: ð18Þ

These expressions explain the singular character of the
graphs shown in Fig. 3.

Relation Between Equilibrium Concentrations of RL and R,
and L

Whereas in the previous formula’s RLss, Rss and Lss were
expressed as functions of kinfus, it is also possible to express
RLss and Rss as functions of Lss. Since the ligand concentra-
tion Lss increases monotonically with the infusion rate kinfus,
the function Lss(kinfus) may be inverted to yield a function of
the form kinfus(Lss). Substituting this function into (9), we
obtain the desired relation between RLss and Lss. Using (7),
this also gives the relation between Rss and Lss. These
relations are shown graphically in Fig. 4 for the parameter
values of Tables I and II.

Fig. 4. RLss and Rss versus Lss for the parameter values of Peletier and Gabrielsson (8) in
Table I (left) and for those of Cao and Jusko (19) in Table II (right). The parameter L50 is
given by Eq. (20). It is a conglomerate of target turnover properties, binding properties
and removal of complex

Table II. Parameter Values Cao and Jusko (2014) (19)

ke(L) kon koff ksyn kdeg ke(RL) R0 R* V

0.00038 0.1 0.001 0.1 0.01 0.03 10 3.3 2.6
h−1 {(nM)h}−1 h−1 (nM)/h h−1 h−1 nM nM L

For these values, the dissociation constant is Kd = 0.01 nM and the
Michaelis-Menten constant is Km = 0.31 nM

Fig. 5. Steady-state ligand concentration Lss versus the ligand
infusion rate In on a log-log scale demonstrating the two parallel
lines L+ and L− with slope +1 and the relative shift ΔL

Interesting Target-Mediated Disposition Properties



In fact, the resulting relations prove surprisingly simple,
they are:

RLss ¼ R�
Lss

Lss þ L50
and Rss ¼ R0

L50

Lss þ L50
ð19Þ

in which

R� ¼ ksyn
ke RLð Þ

¼ kdeg
ke RLð Þ

⋅R0 and L50 ¼ kdeg
ke RLð Þ

⋅Km ð20Þ

The details of this derivation are given in Appendix B.
Thus, the L50 parameter can be directly estimated from data
obtained after iv bolus dosing (cf. Tables I and II).

Disposition from a Clearance Perspective

One may also approach the impact of the ligand infusion
rate on the steady-state ligand concentration Lss through the
notion of clearance, which is related to Lss by:

Lss ¼ In
CL

¼ kinfus⋅V
CL

ð21Þ

At low ligand exposure (Fig. 6 (left), at 1), the target
route of elimination is not saturated and total clearance of
ligand CL is the sum of two first-order processes, namely non-
specific clearance Cl(L) and a first-order clearance via the
target route Cl(RL), i.e.

CL→Cle Lð Þ þ Cle RLð Þ as In→0 ð22Þ

Using the limiting behaviour of Lss as kinfus tend to zero
from Eq. (12) and the relation between Cl(L) and ke(L) from
Eq. (2), we find that

Cl RLð Þ ¼ ke RLð Þ
R0

Km
⋅V ¼ ke RLð Þ

koff þ ke RLð Þ
konR0⋅V ð23Þ

At high exposure (Fig. 6 (left), at 3), the target route is
saturated and only first-order non-specific clearance remains,
i.e.

CL→Cl Lð Þ as In→∞ ð24Þ

Again, ligand disposition follows first-order kinetics.
Between these two exposure ranges (Fig. 6 (left), at 2), a
mixed-order elimination process dominates where the target
route clearance is concentration-dependent.

One may compare this diagram with a diagram showing
ligand concentration at steady state as a function of infusion
rate of ligand (Fig. 6, right), as is done in the graphs shown in
Fig. 3. The two phases show up here as different slopes: at
low infusion rates and hence low ligand concentrations, CL is
high and hence the slope is small, whilst for high infusion
rates, the slope is large.

At intermediate concentrations, the system behaves as a
nonlinear system. Slope is getting higher because clearance is
getting lower and approaches eventually that of non-specific
clearance.

Evidently, Cl(RL) increases with increasing internalisation
rate ke(RL), although, clearly, Cl(RL) is bounded by the
amount of target and the rate of the ligand binds to the target:

Cl RLð Þ→konR0⋅V as ke RLð Þ→∞ ð25Þ

Note that Cl(RL) depends linearly on the target expres-
sion level R0 = ksyn/kdeg, i.e. the target baseline concentration.
Therefore, the higher the target turnover the higher the
clearance via the target route becomes. In two subjects with
the same target level expression R0, but with different
turnover rates (and target half-lives), clearance via target will
be highest when turnover of target is highest. It follows from
the expression in (21) that the same limit for Cl(RL) holds if
the dissociation rate Kd = koff/kon tends to zero.

For the parameter values of Table I, the limits in (22)
and (25) are CL→ 0.0015 L/h as In→∞ and CL→ 0.82 L/h
as In→ 0. These limits are confirmed by the simulated
clearance versus infusion rate graphs shown in Fig. 7 below.

Fig. 6. Left: Clearance of ligand CL as a function of ligand concentration Lss . Right:
Ligand steady-state concentration Lss as a function of ligand infusion rate In. At low ligand
concentrations Lss and infusion rates (1), the elimination of ligand is first-order and
clearance is constant. When ligand concentrations increase the disposition of ligand
becomes mixed-order (2), and at high ligand concentrations (3) only non-specific first-order
elimination of ligand prevails

Gabrielsson and Peletier



The limiting expressions for CL shown in Eqs. (22) and
(24) clearly reveal the relative importance of the two
clearance mechanisms: non-specific clearance (Cl(L)) is pres-
ent for all infusion rates (or ligand concentrations) while
target mediated clearance (Cl(L) +Cl(RL)) becomes significant
for smaller infusion rates (cf. Fig. 7).

We have highlighted different aspects of target-mediated
drug disposition at different steady-state concentrations of ligand
Lss, target Rss and complex RLss. Thus, we have seen that
equilibrium relationships reveal interesting (diagnostic) patterns.

While this manner of dosing may not be the primary
regimen, we envision that certain experimental situations may
benefit from it, particularly when studying the impact of a slow
or fast target turnover process or when further knowledge about
target turnover is sought, or when the limit of detection of
ligand, target or complex is above the terminal phase.

Time to Steady-State

Whereas so far we have focussed on the steady-state
concentrations of the compounds as they are impacted on by
a constant ligand infusion rate In or kinfus, we here discuss
what determines the time to steady-state, e.g. the time it takes
the ligand concentration L(t) to reach 90% of steady state
when the infusion is switched on and to drop to 10% of the
steady-state value when the infusion is switched off. For
practical as well as diagnostic purposes, this is an important
quantity. For instance, in questions involving disease progres-
sion, it is important to make long-term predictions on the
basis of relatively short-term data sets.

In nonlinear models, one can often distinguish different
phases in the concentration-time courses, such as a fast and a
slow phase, associated with different sub-processes. Such a
structure may offer a handle to acquire detailed quantitative
information about the disposition. This, in turn, may then
yield estimates for parameters involved in the system. In the
absence of such a clear structure, one may have to rely on
simulations as shown in Fig. 8 or merely on limiting situations,
such as large or small infusion rates.

Simulations for Small and Large Rates of Infusion

In order to acquire a first impression about the manner
in which the ligand concentration L(t) approaches its steady-

state Lss, and in particular, how long it takes to do so, we
show in Fig. 8 a series of ligand versus time graphs for
different infusion rates kinfus, where L is normalised with
respect to its large time limit Lss. Thus, by construction, for

each infusion rate, x tð Þ¼de f L tð Þ=Lss→1 as t→∞.
Figure 8 displays a rich scala of different ligand versus

time graphs, as the infusion rate kinfus increases: on the left,
the normalised ligand concentration x(t) and on the right, the
difference between the scaled ligand concentration and its
limit, 1−x(t), to assess the rate of convergence. We make the
following observations:

& For smaller infusion rates, specifically for kinfus <
ksyn, the graphs show a clear two-phase structure: a
very rapid upswing towards an intermediate value L,
which we refer to as the plateau value, followed by a
much more gradual rise towards the steady-state Lss.
As the infusion rate increases, the plateau value is
seen to decrease, and as kinfus≈ ksyn, then L≈0 and
the two-phase structure is no longer in evidence.

& For larger infusion rates, kinfus > ksyn, the right hand
panel of Fig. 8 suggests that the scaled ligand concen-
tration L(t)/Lss follows a mono-exponential graph for
all time 0 < t <∞. This graph does not appear to change
much as the infusion rate increases further.

& Note that for kinfus≈ ksyn the ligand graphs in
Fig. 8 show anomalous dependence on the infusion
rate: for small values of kinfus, the ligand curves drop
as kinfus increases, but this trend is reversed when
kinfus comes close to ksyn.

& The half-life of the ultimate convergence to-
wards the steady state differs for small and for large
infusion rates. For the parameter values of Table I,
the half-life is shorter for small infusion rates than it
is for large infusion rates.

Summarising, the nonlinearity of the TMDD system (1)
is evident from Fig. 8; it shows how the disposition changes
qualitatively as well as quantitatively as the infusion rate goes
from small to large, in relation to the endogenous target
synthesis rate ksyn.

Analysis of the Structure of the Disposition

Because of the nonlinear dependence on the infusion
rate we first focus on large and small values of kinfus. Then,
through a more detailed analysis of the structure of the ligand
graphs, we gain insight into the disposition, and the time to
steady-state, for intermediate infusion rates.

Large Infusion Rate

For values of kinfus larger than the critical value ksyn the
amount of ligand in the system rapidly causes the target route
to be saturated so that the ligand dynamics is well approxi-
mated by the equation

dL
dt

¼ kinfus−ke Lð ÞL−ksyn ð26Þ

Hence, the terminal slope and the corresponding half-life
are then given by

Fig. 7. Clearance CLss = In/Lss graphed versus the infusion rate kinfus,
on a log-log scale for parameter values taken from Table I. Note the
sharp transition at kinfus = ksyn = 0.11 (mg/L) h− 1

Interesting Target-Mediated Disposition Properties



λz ¼ ke Lð Þ and t1=2 ¼ ln 2ð Þ
ke Lð Þ

¼ V
CL Lð Þ

⋅ln 2ð Þ ð27Þ

For the value of the elimination rate ke(L) given in
Table I, this amounts to t1/2 = 462 h, which agrees with the
simulation shown in Fig. 8.

Small Infusion Rate

For small infusion rates the ligand versus time graphs in
Fig. 8 exhibit a distinct two-phase structure: (i) A brief initial
phase in which L(t) jumps to an intermediate value L, (ii) A
subsequent long phase in which L(t) climbs from L to its
ultimate steady-state Lss. The reason is that for small infusion
rates the receptor has a relatively large capacity and quickly
absorbs the ligand pumped into the system.

As is well known, the disposition of nonlinear systems
critically depends on the values of the parameters in the
system. In the analysis below we make the following
assumptions. They are the same as made in (8):

A : ε ¼ Kd

R0
≪1: B :

ke Lð Þ
koff

;
kdeg
koff

;
ke RLð Þ
koff

< M ð28Þ

Here M is a constant that is not too large, i.e. ε⋅M≪ 1.
The parameter values of (8) (cf. Table I) and (19) (cf.
Table II) are seen to agree with these conditions.

It can be shown that when the assumptions A and B are
satisfied, then for a brief initial period the ligand equation can
be well approximated by the simpler equation

dL
dt

¼ kinfus−konR0⋅L: ð29Þ

Therefore, ligand is absorbed at the rate konR0, and
hence during this first - absorption - phase

L tð Þ→L ¼de f kinfus
konR0

and t1=2 ¼ ln 2ð Þ
konR0

ð30Þ

Note that in principle L=Lss can be calculated explicitly
from the expression for Lss obtained from (7) and (9) and
(10). Hence, for the parameter values of Table I, the short-
time half-life is 0.63 h. For details we refer to the short-time
analysis given in Appendix D.

Using the limit of Lss(kinfus) as kinfus→ 0, given by
Eq. (12), we obtain the limit of the dimensionless plateau
value of the ligand concentration L=Lss as kinfus→ 0:

L kinfusð Þ
Lss kinfusð Þ→

1
kon

ke Lð Þ
R0

þ ke RLð Þ
Km

	 

as kinfus→0 ð31Þ

For the parameter values given in Table I the limit in
(33) is L=Lss→0:75.

In Fig. 9, we show a close-up of the short-time behaviour
of the scaled ligand curves with time, as in Fig. 8 but for
smaller infusion rates. The limiting values of the plateau value
and the half-life, as kinfus→ 0, are seen to be close to the
values derived in Eq. (31).

We see that the scaled plateau valueL=Lss decreases as the
infusion rate increases. In order to understand this monotonicity
property, we use the expression for the scaled plateau value of
the ligand concentration obtained by a short-time analysis of the
dynamics (cf. Appendix D). It yields the formula

L
Lss

¼ ϕ kinfusð Þ ¼de f 1
konR0

⋅
kinfus

Lss kinfusð Þ ð32Þ

Remembering from Fig. 3 that the graph of Lss versus
kinfus is convex, we conclude that L=Lss is a decreasing
function of kinfus, as seen in the right panel of Fig. 9.

As the infusion rate becomes small, the steady states of
ligand, receptor and ligand-receptor complex approach the
trivial steady state: L = 0, R =R0 and RL = 0, i.e.

Lss kinfusð Þ→0; Rss kinfusð Þ→R0; RLss kinfusð Þ
→0 as kinfus→0

ð33Þ

Accordingly, the terminal slope approaches that of the
convergence to the trivial steady-state:

λz kinfusð Þ→λz;0 as kinfus→0 ð34Þ

where λz;0 denotes the terminal slope for convergence
towards (L,R,RL) = (0,R0, 0). Subject to the assumptions A
and B given by (28), it can be shown that

λz;0≈ke RLð Þ and hence t1=2≈
ln 2ð Þ
ke RLð Þ

¼ 231 h ð35Þ

Fig. 8. Ligand versus time graphs, scaled with respect to their limiting value Lss, for
infusion rates that straddle the critical rate kinfus = ksyn. In this example, ksyn = 0.11 h− 1 (cf.
Table I)
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Therefore, for the parameter values of Table I, for small
infusion rates, the half-life is about half of what it is for large
infusion rates. For the derivation, we refer again to
Appendix C.

Thanks to the two-phase structure of the dynamics we
deduce that for small infusion rates the time to steady state is
considerably shorter than without such a structure, because
the ligand concentration quickly jumps to a plateau value L
which may be quite close to the ultimate stationary ligand
concentration Lss. For example, for the data of Table I, when
kinfus is small, L jumps about 75% of the way in a period of
2.5 h. Another half-life brings it up to ≈90% of the steady-
state value Lss, much shorter than the usual 3–5 half-lives.

Washout Profiles

The practical value of washout profiles and steady-
state conditions may be appreciated by looking at Figs. 3
and 10. Figure 10 combines both steady state and the

washout profiles after multiple constant-rate infusion
regimens. From a disposition point of view, the washout
profiles after two or more intravenous (bolus or infusion)
doses reveal at what concentrations the disposition devi-
ates from linear first-order conditions. The washout
profiles contain information about half-lives and other
parameter values. They are typically used for regression
of models after rapid iv injection doses. But nonlinear
washout profiles are difficult to interpret and to convert to
the steady-state situation which may be appreciated by
Fig. 3.

In Fig. 10, we show simulations of a rise in plasma
concentrations followed by washout at t = 5000 h. The
disposition is seen to exhibit the same two-phase structure:
a very rapid drop followed by a slower decline to zero. As
expected, the ligand versus time graphs after washout are
similar to those observed after an iv bolus administration,
as is seen in the right hand figure in which the graph for
kinfus = 0.15 mg/L/h exhibits the characteristic TMDD
profile shown in Fig. 2, without the initial phase (A).

Fig. 9. On the left: Ligand versus time graphs, scaled with respect to their limiting value
Lss, for small values kinfus, and On the right: L=Lss versus kinfus

Fig. 10. Ligand versus time graphs with L on a logarithmic scale (above), and scaled with
respect to their limiting value Lss (below), for infusion rates that straddle the critical rate
kinfus = ksyn (kinfus = 0.01, 0.05, 0.1 and 0.15 mg/L/h), as shown in Fig. 8, but in the presence
of washout at t = 5,000 h
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DISCUSSION AND CONCLUSION

This communication focuses on the kinetics of target
mediated disposition following constant-rate infusion of
ligand followed by washout. To our knowledge, this regimen
has not been considered from a mathematical/analytic
approach previously. The major topics are (i) steady-state
concentrations of L, R and RL as functions of the infusion
rate In, (ii) clearance concepts, (iii) infusion and (iv) washout
in experimental design. This study is aimed at supporting
design, interpretation of data and communication across
compounds and studies. The different topics are discussed in
a series of subsections.

Steady States of L, R and RL as a Function of In

Analytical expressions are derived of ligand L, target R
and complex RL at steady-state. They are accompanied in
Fig. 3 by graphs of Lss, Rss and RLss as functions of the ligand
infusion rate (In or kinfus). We take this further by deriving
relationships of the target and complex concentration as
functions of the ligand concentration at equilibrium (cf.
Fig. 6). The graphs are given for the parameter values in
Tables I and II. This new relationship between target R (or
complex RL) and ligand L at steady state is derived and
introduces the parameter L50:

Rss ¼ R0⋅
L50

Lss þ L50
where R0 ¼ ksyn

kdeg
ð36Þ

The parameter L50, given by (20), is then the plasma
concentration of ligand at which target and complex have
their half-maximal values.

Surprisingly, when the internalisation of complex is much
faster than the off rate, i.e. ke(RL)≫ koff, then L50 can be
approximated by the ratio of kdeg (degradation of target) and
kon (binding on rate)

L50≈
kdeg
kon

ð37Þ

This suggests that when the on-rate kon is high and the
fractional turnover rate of target is low, the system behaves
more irreversibly and less ligand is required. If target
turnover is increased (kdeg increases and t1/2;deg decreases),
more frequent dosing or higher doses of ligand may be
required.

Thus, if target R needs to be suppressed to a certain
extent, say to less than 5% of its baseline value R0, then
Eq. (36) yields

Rss

R0
¼ L50

Lss þ L50
< 0:05 and hence Lss > 19� L50 ð38Þ

Again, this steady-state expression is simple and may
serve as guidance for experimental design and dose selection.

The maximum value of the complex RLmax will be R*, as
seen in (6). Therefore,

RLmax≤
ksyn
ke RLð Þ

¼ R0
kdeg
ke RLð Þ

ð39Þ

Hence, the upper bound is a simple function of the target
baseline R0 and the ratio kdeg to ke(RL). Again, understanding
the turnover of target (kdeg) yields pivotal information about
the level of the complex. By (19), the ratio of the complex to
target concentration at steady state becomes

RLss

Rss
¼ kdeg

ke RLð Þ
⋅
Lss

L50
ð40Þ

Note that for the two data sets the ratio kdeg/ke(RL) is
very different:

kdeg
ke RLð Þ

¼ 3 Table1ð Þ
0:3 Table2ð Þ

�

Thus, interestingly, one can quite easily obtain the
relative burden of complex to target by means of the
expression (40). In other words, the slower target turnover
(kdeg low) relative to complex turnover (ke(RL) high), the
smaller is the complex-to-target ratio.

Finally, we recall the characteristic—often piece-
wise—shape of the graphs of the ligand, target and complex
concentration versus the infusion rate, with a kink located at
kinfus≈ ksyn. The parameter that is responsible for this
behaviour is the dimensionless parameter

κm ¼ Km

R0
ð41Þ

which for both data sets, given in (8) and (19), is quite small.

Clearance Concepts

The clearance concept has since the early 1970s played a
central role in pharmacokinetics (cf. Rowland, Benet and
Graham (20,21) and Wilkinson and Shand (22)).

Clearance may, in the TMDD context be shown as a
function of ligand concentration (Fig. 6, left) or as the
inverse of the slope of ligand concentration when plotted
versus the infusion rate In (Fig. 6, right). The TMDD model
(Figs. 1 and 6) is operating between two boundaries of
clearance. One that includes first-order elimination at low
ligand concentration L via both specific TMDD and non-
specific clearance routes. This is the upper boundary of
clearance. The lower boundary is when the target route is
saturated and the non-specific route Cl(L) is dominating.
Clearly, target-dominated clearance Cl(RL) is bounded by
target concentration and the second-order on rate when the
internalisation route ke(RL) of complex is fast. We have
derived analytical/mathematical expressions of clearance in
parallel to simulations of its dependence on the infusion
rate.
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Again, the steady-state situation reveals properties of the
system not easily obtained from bolus curves.

Infusion and Washout in Experimental Design

We also put the disposition of TMDD systems into a
constant-rate infusion perspective. Even though extended
constant-rate infusion protocols are seldom applied for
antibodies, it is important to recognise its potential useful-
ness. For instance, in Peletier and de Winter (23), it served to
warn against effects of drugs that have a dynamics that is slow
compared to the usual time span over which clinical
experiments are conducted.

From a disposition point of view, the washout profiles
after two or more intravenous (bolus or infusion) doses reveal
at what concentrations the disposition deviates from linear
first-order conditions. They contain information about half-
lives and other parameter values. Nonlinear washout profiles
are difficult to interpret and to convert to the steady-state
situation which may be appreciated by Fig. 3. The constant-
rate iv infusion protocol, followed by the washout profiles is
generally a more robust approach especially when nonlinear
PK prevails. The primary reason for this is that with
increasing infusion rates the time to steady state increases,
the steady-state concentration increases disproportionately
and the ability to identify parallel mixed-order elimination
processes improves.

For a linear system, the rise of the ligand concentration
during infusion offers the possibility to measure the impact of
different infusion rates on the limiting steady-state concen-
trations, as well as the time to steady state which, as we have
seen, may vary considerably for different infusion rates.
Specifically, with increasing ligand infusion rates In, the time
to steady state of L increases, the steady-state concentration
increases disproportionately and the ability to identify
parallel mixed-order elimination processes increases.

The rapid drop of the ligand concentration at the
termination of the infusion yields concentration profiles which
are akin to those obtained by iv bolus administration, except
for the—usually brief—initial binding phase (cf. Fig. 10). Such
profiles have been studied extensively, (see e.g. (4) and (8))
and they often also yield considerable insight into the
different processes making up TMDD. Quite often though,
the terminal phase involves very low ligand concentrations,
sometimes too low to provide accurate data.

Conclusion

This paper highlights the impact of the nonlinear
binding, linear non-specific elimination (clearance) and linear
internalisation processes of the TMDD system with a
circulating target. We derive useful equilibrium expressions
for ligand L, target R and ligand-target complex RL. These
expressions are based on iv bolus experiments.

Simulations of Lss, Rss and RLss are then displayed as
functions of varying constant-rate infusion regimens In. These
simulations reveal, to our knowledge, new patterns of the
primary variables (L, R, RL) which are of practical value for
an understanding and experimental design point of view.

APPENDIX

A: Two-Compartment Model

When drug is distributed over a central and peripheral
compartment with volumes V and L in the central
compartment and Vt and Lt in the peripheral compartment
the basic, one-compartment model given in (1) is extended
to include an equation for the dynamics for Lt and
becomes

dL
dt

¼ 1
V

In−CldLþ CldLtð Þ−konL⋅Rþ koffRL−
Cl Lð Þ
V

L

dLt

dt
¼ 1

Vt
CldL−CldLtð Þ

dR
dt

¼ ksyn− kdegR − konL ⋅ R þ koffR L

dRL
dt

¼ konL ⋅ R − koff þ ke RLð Þ
� �

R L

8>>>>>>>>><
>>>>>>>>>:

ðA:1Þ

Here Cld denotes the between-compartments clearance.
It is assumed that leakage out of the peripheral compartment
may be neglected.

Note that the steady states of the one- and two-
compartment models are the same because by the second
equation in (A.1) at steady state the exchange between the
two compartments cancels.

B: Computation of Steady State

When we put the derivatives in the system (1) or (A.1)
equal to zero, we obtain a nonlinear algebraic system of three
equations involving the three steady-state concentrations Lss,
Rss, RLss:

kinfus − kon L⋅Rþ koff RL − ke Lð ÞL ¼ 0
ksyn − kdeg R − kon L⋅R þ koffRL ¼ 0
kon L ⋅ R − koff þ ke RLð Þ

� �
R L ¼ 0

8<
: ðB:1Þ

For simplicity, we have omitted the subscript ßs″ from
the concentrations in (B.1), and elsewhere in this appendix.

Adding the first and the third equation of (B.1) yields a
relation that involving only RL and L:

kinfus ¼ ke RLð ÞRLþ ke Lð ÞL ðB:2Þ

Adding the second and the third equation of (A.1) yields
a relation involving only terms of R and RL:

ksyn ¼ ke RLð ÞRLþ kdegR ðB:3Þ

Using these two relations to eliminate R and L from the
first equation, we obtain a quadratic equation for RL:

Y2− kinfus þ ksyn 1þ θ⋅κmð Þ� �
Y þ kinfus ksyn ¼ 0; Y ¼ ke RLð ÞRL ðB:4Þ
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where θ, κm and κm are given in (10). Because the quadratic
Eq. (B.4) has a positive discriminant, it has two distinct roots,
RL+ and RL−. They are endowed with the property

ke RLð Þ RLþ þ RL−ð Þ ¼ kinfus þ ksyn 1þ θ⋅κmð Þ ðB:5Þ

Adding (B.2) and (B.3), we deduce that the steady-state
value of RL must satisfy the inequality

2ke RLð ÞRL < kinfus þ ksyn ðB:6Þ

This implies that the desired steady-state value of RL
must be given by the smaller of the two roots: RL−, i.e.

RL ¼ 1
2ke RLð Þ

kinfus þ ksyn 1þ θ⋅κmð Þ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kinfus þ ksyn 1þ θ⋅κmð Þ� �2−4kinfusksyn

q� �

ðB:7Þ

The two expressions (B.2) and (B.3) yield the corre-
sponding steady-state values for L and R.

Expressions for Large and Small Infusion Rates

The asymptotic expressions for the concentrations for
kinfus→∞ and kinfus→ 0 given in (11) can be derived from the
expression for RLss given by (B.7). For convenience, we write
it as

Y ¼ 1
2

kþ a−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ að Þ2−4 k b

q� �
; k ¼ kinfus;

a ¼ 1þ θ⋅κm; b ¼ ksyn

ðB:8Þ

For large k = kinfus, we can expand this expression as

Y ¼ k
2

1þ a
k
− 1þ a

k
−
2b
k

þO k−2
� �	 
� �

¼ bþO k−1
� �

as k→∞ ðB:9Þ

and hence

RLss ¼ ksyn
ke RLð Þ

þO k−1infus
� �

as kinfus→∞

For small k = kinfus, we can expand this expression as

Y ¼ 1
2

kþ a−a 1þ k
a
−
2b
a2

þO k2
� �	 
� �

¼ b
a
kþO k2

� �
as k→0:

which translates into

RLss ¼ 1
ke RLð Þ

R0

R0 þ
ke Lð Þ
ke RLð Þ

Km

⋅kinfus as kinfus→0 ðB:10Þ

as given in (11).

Expressions for Small κm

We now write Eq. (B.7) as follows:

Y ¼ 1
2

kinfus þ ksyn þ ε −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kinfus−ksyn
� �2 þ 2εþO ε2ð Þ

q� �
ðB:11Þ

where ε = ksyn θ ⋅ κm is a small quantity, and expand in terms
of ε. We distinguish two cases

að Þ kinfus < ksyn and bð Þ kinfus > ksyn ðB:12Þ

(a) If kinfus < ksyn, then

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kinfus−ksyn
� �2 þ 2εþO ε2ð Þ

q
¼ ksyn−kinfus þO εð Þ

and

Y ¼ 1
2

kinfus þ ksyn
� �

− ksyn−kinfus
� �þO εð Þ� � ¼ kinfus þO εð Þ

which yields

RLss ¼ kinfus
ke RLð Þ

þO εð Þ as ε→0 ðB:13Þ

(b) If kinfus > ksyn, then

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kinfus−ksyn
� �2 þ 2εþO ε2ð Þ

q
¼ ksyn−kinfus þO εð Þ

and

Y ¼ 1
2

kinfus þ ksyn
� �

− kinfus−ksyn
� �þO εð Þ� � ¼ ksyn þO εð Þ

which yields

RLss ¼ ksyn
ke RLð Þ

þO εð Þ as ε→0 ðB:14Þ
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as given in (16).
In order to express RL and R in terms of L, we use (B.2)

to eliminate kinfus from Eq. (B.4). After some rearrangement,
this yields the following expression in Y and X =L:

ke Lð ÞX þ ksyn⋅θ⋅κm
�� �

Y ¼ ksyn ke Lð ÞX :

and hence

Y ¼ ksyn
X

X þX50
; X50 ¼ ksyn

ke RLð Þ
⋅
Km

R0
ðB:15Þ

or

RL ¼ ksyn
ke RLð Þ

L
Lþ L50

; L50 ¼ X50 ¼ ksyn
ke RLð Þ

⋅
Km

R0
: ðB:16Þ

From (B.3), we deduce that

R ¼ ksyn
kdeg

⋅
L50

Lþ L50
¼ R0⋅

L50

Lþ L50
: ðB:17Þ

In Eqs. (B.16) and (B.17), L50 is the plasma concentra-
tion of ligand resulting in half-maximal concentration of
complex RL and target R at steady-state.

In Fig. 11, we show three pairs of graphs ofR andRL versus
L, all at steady state, for different values ofR* relative toR0:R∗ >
R0, R∗ <R0 and R∗ =R0, as derived in (B.9) and (B.10).

In light of these findings, we advocate the use of multiple
intravenous infusions at different infusion rates of ligand. Not
only information about the established steady-state concen-
trations of Lss, Rss and RLss is obtained but also the
relationships between them.

This has a practical application when scaling data across
species since the expressions contain target baseline concen-
trations R0 as well as the target turnover rates ksyn.

C: Computation of the Terminal Slope

It is well known that in the absence of infusion (kinfus = 0),
the concentrations (L, R, RL)(t) converge to the trivial steady-
state (L,R,RL) = (0,R0, 0). In order to compute the terminal
slope λz for the ligand, receptor and ligand-receptor concentra-
tion profiles, we linearise the system (1) about this steady-state.
WritingL = ξ,R =R0 + η andRL = ζ, we obtain the linear system

dξ
dt

¼ − konR0 þ ke Lð Þ
� �

ξþ koffζ

dη
dt

¼ −konR0 ξ−kdegη þ koffζ

dζ
dt

¼ konR0 ξ− koff þ ke RLð Þ
� �

ζ

8>>>>><
>>>>>:

ðC:1Þ

when higher-order terms are omitted. It is convenient to write
this system in vector and matrix notation:

dZ
dt

¼ AZ where Z ¼
ξ
η
ζ

0
@

1
A ðC:2Þ

and A is the coefficient matrix of the linear system (C.1):

A ¼
− konR0 þ ke Lð Þ
� �

0 koff
−konR0 −kdeg koff
konR0 0 − koff þ ke RLð Þ

� �
0
@

1
A ðC:3Þ

We assume that the matrix −A has three distinct
eigenvalues λ1, λ2 and λ3 and that Z1, Z2 and Z3 are the
corresponding eigenvectors. The General Solution of
Eq. (C.2) then takes the form

Z tð Þ ¼ C1Z1e−λ1t þ C2Z2e−λ2t þ C3Z3e−λ3t ðC:4Þ

where C1, C2 and C3 are arbitrary constants.
The eigenvalues λi(i = 1, 2, 3) are the roots of the

equation

det Aþ λIð Þ ¼ 0

We find that

λ1 ¼ kdeg

and λ2 and λ3 are the roots of the quadratic equation

λ2−aλþ b ¼ 0 ðC:5Þ

in which

a ¼ konR0 þ ke Lð Þ þ koff þ ke RLð Þ
b ¼ konR0 ke RLð Þ þ ke Lð Þ koff þ ke Lð Þ ke RLð Þ

ðC:6Þ

Remark. Naturally, when ke(RL) = 0 then ligand will still
leak out of the system, albeit more slowly, thanks to direct
elimination of ligand. For this case, we obtain the following
terminal slope:

λz ¼ b
a
¼ ke Lð Þ

Kd

R0
ðC:7Þ

D: Short-Time Analysis

We define the dimensionless variables

x ¼ L
Lss

; y ¼ R
R0

; z ¼ RL
R0

; τ ¼ konR0t ðD:1Þ

Introducing these variables into the system (1) results in
the dimensionless system

dx
dτ

¼ ϕ kinfusð Þ−x⋅yþ ε
ν
z−εα x

dy
dτ

¼ ε β 1−yð Þ− ν x ⋅y þ ε z

dz
dτ

¼ ν x ⋅ y − ε 1þ γð Þ z

8>>>>><
>>>>>:

ðD:2Þ
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where

α ¼ ke Lð Þ
koff

; β ¼ kdeg
koff

; γ ¼ ke RLð Þ
koff

;

ε ¼ Kd

R0
; ν ¼ Lss

R0

ðD:3Þ

and

ϕ kinfusð Þ ¼ 1
konR0

kinfus
Lss kinfusð Þ →

γ
1þ γ

þ εα as kinfus→0 ðD:4Þ

For the parameter values of Table I, α and ε are very
small, β and γ are of moderate size and for small values of
kinfus, the parameter ν is also small. Since z(0) = 0, and x and y
are uniformly bounded, this means that z(τ) < ν τ for τ > 0 and
hence that the term ε(z(τ)/ν) in the first equation of (D.2) is
small. Thus, for an initial period for which τ is not too large,
say τ < 4, the solution of the system (D.2) is well approxi-
mated by the solution of the reduced system

dx
dτ

¼ ϕ kinfusð Þ−x⋅y
dy
dτ

¼ 0

dz
dτ

¼ 0

8>>>>><
>>>>>:

ðD:5Þ

Because y(0) = 1, it follows that y(τ) = 1 for τ≥ 0 and
hence the first equation becomes

dx
dτ

¼ ϕ kinfusð Þ−x; x 0ð Þ ¼ 0 ðD:6Þ

Therefore,

x τð Þ ¼ ϕ kinfusð Þ 1−e−τð Þ ðD:7Þ

so that

L tð Þ→Lssϕ kinfusð Þ as t→∞ and t1=2 ¼ ln 2ð Þ
konR0

ðD:8Þ

For the parameter values of Table I, we find that for
small values of kinfus:

L tð Þ
Lss

→0:75 as t→∞ and t1=2 ¼ 0:63 h ðD:9Þ
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Creative Commons license, and indicate if changes were
made.
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