

PD12: Study Background

- APP mice produce excess human Amyloid Precursor Protein.
- Cleavage of APP initiates a cascade of secretases, including gamma secretase (GSECR), that results in the formation of amyloid peptide fragments that deposit to form insoluble plaques in the brain.
- By inhibiting GSECR, one hopes to produce less plaque formation via a decrease in formation of amyloid peptide fragments.
- Concentration of soluble beta-amyloid in brain serves as a biomarker of GSECR enzyme activity.

PD12: Exploratory Data Analysis

- Characterize the turnover-driven response to a gamma secretase (GSECR) inhibitor in mice
- Response is measured as % decrease in the biomarker betaamyloid vs time

PK12: Protocol

 Previous studies show a delay between peak inhibitor concentration and maximum inhibitory response, suggesting an indirect response model.

PD12 Objective: use PK from previous study to simulate concentrations

- PK: use fixed parameters from a 1-compartment model obtained from a previous study to simulate concentrations.
- Extravascular 1-compartment model:
- dC/dt = Dose*ka/V*(ka-ke)
 - Ka = absorption rate constant, 8.8 1/hr
 - Ke = elimination rate constant, 0.605 1/hr
 - V = volume of distribution, 3.05 L
- Solve concentration function at different time points for a given dose level.

PD12: Objective: Construct mechanistic Turnover model

- Rate of production is inhibited by the function I(C)
- Indirect response is modeled using dR/dt = kin*I(C) kout*R
 - Kin = zero order rate of production
 - Kout = first order rate of loss
 - I(C) = mechanistic inhibition of Kin

PD12: Objective: Model drug mechanism using Inhibitory function

- I(C)— typical inhibitory Imax function
- Inhibitory function I(C) = 1 Imax*C^Y / (IC50^Y + C^Y)
 - Imax = maximum inhibitory response
 - IC50 = concentration at which 50% of maximum inhibition occurs
 - Gamma = exponent for sigmoid Imax model

PD12: Objective: Full mechanistic Turnover model

- Full model, substituting in the mechanistic inhibition function:
- $dR/dt = Kin * (1 Imax * C^{Y}/(C^{Y} + IC50^{Y})) Kout * R$
- Get final estimates for the following parameters:
 - Kin = zero order rate of production
 - Kout = 1st order loss
 - Imax = maximum inhibition
 - IC50 = concentration at which 50% of maximum inhibition occurs
 - Gamma = exponent for sigmoid Imax function

PD12: Built-in PK/indirect: inhibition of production

PD12: Graphical Model

PD12: Indirect Response Model: PML Code

```
□ test() {
        # differential eg's for PK model
        deriv(Aa = - Ka * Aa)
        deriv(A1 = Ka * Aa - Ke * A1)
5
        # differential eq for indirect response model
6
        deriv(E = Kin * (1 - Imax * C ^ gam / (C ^ gam + IC50 ^ gam)) - Kout * E)
7
        # extravascular dose administration
8
        dosepoint (Aa)
9
        # concentration in the central compartment
10
        C = A1 / V
11
        # baseline response RO
12
        sequence {E = Kin / Kout}
13
        # observed response and error model
14
        error (EEps = 1)
15
        observe (EObs = E + EEps)
16
        # PK parameters as frozen fixed effects
17
        fixef(Ka(freeze) = c(, 8.8, ))
18
        fixef(V(freeze) = c(, 3.05, ))
19
        fixef(Ke(freeze) = c(, 0.605, ))
20
        # Indirect response parameters with initial estimates
21
        fixef(Kin = c(, 60, ))
22
        fixef(Kout = c(, 1, ))
23
        fixef(Imax = c(, 0.67, ))
24
        fixef(IC50 = c(, 1, ))
25
        fixef(gam = c(, 1, ))
26
```


PD12: Initial Estimates

- IC50 = 1, derived from overlay plot at 50% inhibition
- Gamma = exponent, arbitrarily set to 1 (from reduced model)
- R0 = 60, from exploratory plot response at time = 0
- Kout = 1, derived from slope of downswing in exploratory plot
- Kin = R0*kout = 60
- $\Delta R = R0 Rmin = 60-20 = 40$
- $Imax = \Delta R^*kout/kin = 40/60 \sim 0.67$

Demo

PD12: Results

• Fit

Final Parameter Estimates

	Parameter	Estimate	Units	Stderr	CV%	2.5% CI	97.5% CI	Var. Inf. factor
1	tvKa	8.8	1/min	0	0	8.8	8.8	0
2	tvV	3.05		0	0	3.05	3.05	0
3	tvKe	0.605	1/min	0	0	0.605	0.605	0
4	tvKin	123,196	%/(min)	6.4234726	5.2140269	102.75387	143.63813	62.232
5	tvKout	1.99168	1/min	0.097173042	4.8789485	1.6824354	2.3009246	0.014285
6	tvImax	0.705753		0.011407454	1.6163521	0.66944979	0.74205621	0.00020058
7	tvIC50	0.965352		0.046750401	4.8428346	0.816573	1.114131	0.0032631
8	tvgam	2.49622		0.25736744	10.310287	1.677171	3,315269	0.10257
9	stdev0	0.81236		0.19147585	23.570319	0.20300512	1.4217149	

PD12: Summary

- Fix PK parameters from previous study
- Develop an indirect response model
- Derive initial estimates
- Fit the model to the data
- Review results
- Simulate response at different dose levels

Questions?

PML School: Materials

- Each model will be made available in Certara Forum
 - Link to live webinar and presentation slides
 - https://support.certara.com/forums/forum/34-pml-school/
 - Model text as file download
 - Can be imported into Phoenix model object to be run on a new dataset
 - Questions and comments can be exchanged in the Forum
 - Or can be entered into the Certara Support portal at:
 - https://support.certara.com/support
 - Or can be sent as emails to <u>support@certara.com</u>
- PML School on Twitter: @PML_School
 - Notifications on updates of materials, Q&A and discussions
 - Announcements of new sessions
- PML School on Youtube:
 - https://www.youtube.com/user/CertaraLP/videos

Certara University

- A wide range of On Demand and Classroom courses are available through Certara University:
 - Introductory, intermediate and advanced instruction in Phoenix WinNonlin, Population Modeling using NLME, IVIVC Toolkit
 - Fundamentals of Pharmacokinetics and Pharmacodynamics
 - Noncompartmental data analysis
 - Programming Bootcamp
 - Partner Lectures and Webinar series
- Please visit our <u>Certara University</u> web site for more information

Coming up...

Modeling PK/PD Systems with Distributed Delays

Speaker(s): Wojciech Krzyzanski

Date: May 16, 2017 Time: 11 am EST Duration: 1 hour

Effect Compartment III: IV infusion

Model response-time data with a link-model

May 11, 2017 | 10am EST

Presenter: Bernd Wendt

