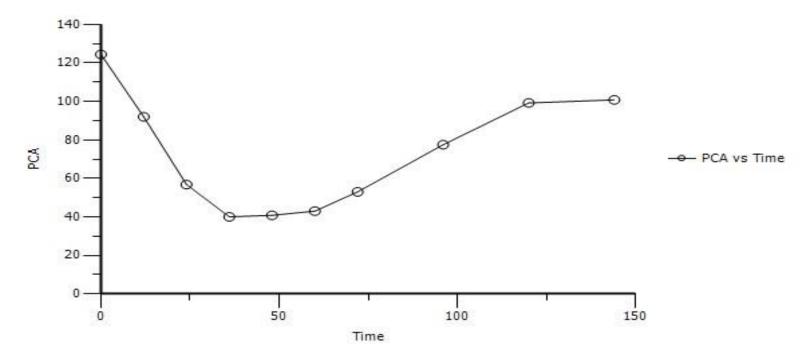


PD4: Background


- Warfarin is often prescribed as an anticoagulant.
- Warfarin acts indirectly to prevent blood clotting, by inhibiting the production of reduced Vitamin K, that is involved in the formation of the Prothrombin Complex, as shown below:

PD4: Protocol

- An IV bolus dose of Warfarin is administered
- Response is measured as % of Prothrombin Complex Activity (PCA) compared to normal (100%)
- % PCA vs Time:

Gabrielsson & Weiner, Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications, 5th Edition, Swedish Pharmacology Press (2015)

© Copyright 2015 Certara, L.P. All rights reserved.

- Warfarin PK is well characterized from previous studies.
- A 1-compartment bolus model with micro constants (V, Ke) will be used for the PK parameters in the following equation:

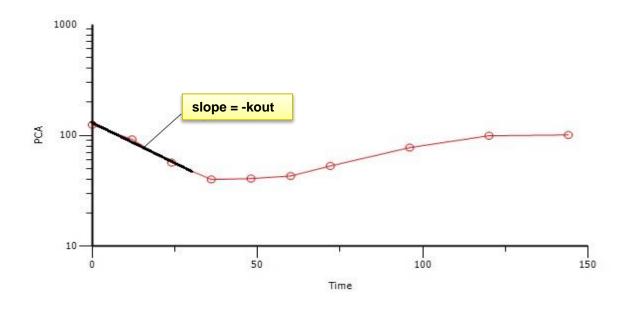
•
$$C_w = \text{Dose/V} * \exp(-\text{Ke}*t)$$

- Dose = 1.05
- V = 1
- Ke = 0.0228

- Use indirect response to model Warfarin-PCA interaction
- Elaborate on a model with and without lag time in the dynamics
- Compare the two models by AIC and parameter precision
- Optional: extend to a precursor pool model

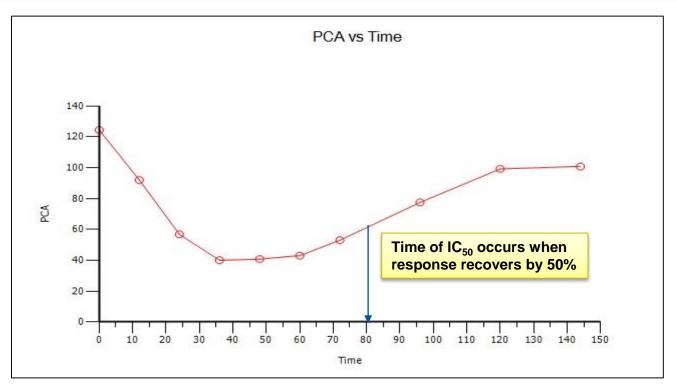
PD4: Derivation of Warfarin Inhibitory function

- The empirically found inhibitory function of warfarin on the synthesis rate of PCA (assuming Imax = 1) is:
- $I(C) = 1 C^{\gamma} / (IC_{50}^{\gamma} + C^{\gamma})$
- Substitute $(IC_{50}^{\gamma} + C^{\gamma}) / (IC_{50}^{\gamma} + C^{\gamma})$ for 1:
- = $(IC_{50}^{\gamma} + C^{\gamma}) / (IC_{50}^{\gamma} + C^{\gamma}) C^{\gamma} / (IC_{50}^{\gamma} + C^{\gamma})$
- = $IC_{50}^{Y} / (IC_{50}^{Y} + C^{Y})$
- Divide numerator and denominator by IC_{50}^{γ} gives:
- = 1 / $(1 + C^{\gamma} / IC_{50}^{\gamma})$
- $I(C) = 1 / (1 + (C / IC_{50})^{\gamma})$



- The turnover rate of PCA is adapted from the base inhibitory turnover model:
- $dPCA/dt = kin * I(C_w) kout * PCA$
 - Kin = rate of production
 - Kout = rate of loss
- At baseline, $R_0 = kin/kout$, therefore kin = $R_0 * kout$
- Set $R_0 = P_0$, and substitute P_0^* kout for kin:
- $dPCA/dt = P_0 * kout * I(C_w) kout * PCA$
- Rearranges to:
- $dPCA/dt = kout * (P_0 * I(C_w) PCA)$

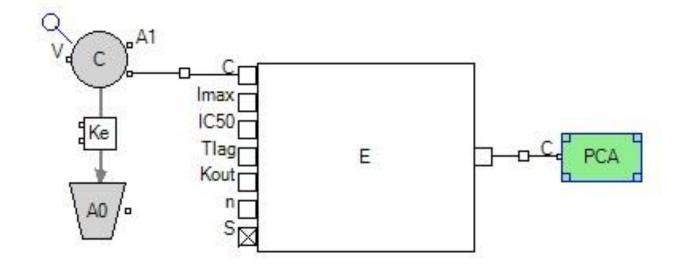
PD4: kout Initial Estimate



$$k_{out} = -\frac{\ln(124.4) - \ln(56.77)}{0 - 24} \approx 0.03 \,\mathrm{h}^{-1}$$

PD4: IC₅₀ Initial Estimate

- IC_{50} estimate: solve C_w at time = 80:
- $C_w = Dose/V * exp(-Ke*t)$
- $IC_{50} = 1.05/1 * exp(-0.0228*80) = 0.16$


- P_0 is baseline PCA activity = 124
- Kout = 0.03, derived from onset slope in exploratory plot
- IC_{50} = warfarin concentration when response recovers by 50% = 0.16
- n = gamma exponent, can be found by fitting built-in inhibitory indirect response model = 4

Population?	Structure	Parameters	Input Options	Initial Estim	nates	Run Options	Model Text Plots no warnings
Type: PK/Indirect	-						Set WNL Model
Parameterization:	Absorption:	Num Con	npartments:	Parameters:	State	ements:	
Micro	 Intravenous 	▼ 1	-	٧	deriv	(A1 = - Ke * A1)	
📃 tlag?	Elim. Cpt.?			Ke	deriv	(E = Kin * (1 - Imax	(*C^gam / (C^gam + IC50 ^gam)) -
Closed form?				Kin	dose	point(A1)	
Infusions possib	le? 🔽 Fr	eeze PK?		Kout	C = /	41 / V	
Effect Cpt?				Imax	sequ	ence{E = Kin / Ko	ut}
	ib. Limited 🔻	OF Bui	ld-up	IC50	error	(EEps = 0.493378)	
	Exponent	Freeze Indin		gam	obse	rve(EObs = E + <mark>E</mark> E	Eps)

PD4: Graphical Model

Gabrielsson & Weiner, Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications, 5th Edition, Swedish Pharmacology Press (2015)

© Copyright 2015 Certara, L.P. All rights reserved.

PD4: Base Turnover Model 1: PML Code

```
  test() {

2
        #dose delivered to central compartment
3
        dosepoint (A1)
4
         #initial concentration of warfarin
5
        Cw = A1 / V
6
        #differential equation for PK model
7
        deriv(A1 = -Ke * A1)
8
        #inhibitory function of warfarin
9
        Inh = 1 / (1 + (Cw/IC50)^n)
10
        #initial value for PCA set to PO (baseline parameter)
11 白
         sequence{PCA=P0;}
12
         #differential equation for PCA
13
        deriv(PCA=Kout*(PO*Inh - PCA))
14
         #observed PCA with additive error term
15
         error(Eps=1)
16
         observe(PCAObs = PCA+Eps)
17
         #PK parameters as frozen fixed effects
18
        fixef(V(freeze) = c(, 1, ))
19
        fixef(Ke(freeze) = c(, 0.0228, ))
20
         #turnover model parameters as fixed effects with intitial estimates
21
        fixef(IC50 = c(, .16, ))
22
        fixef(n = c(, 4, ))
23
        fixef(Kout = c(, .03, ))
24
        fixef(P0 = c(, 124, ))
25
```


PD4: Base Turnover Model 2 with Lag Time: PML Code

```
1

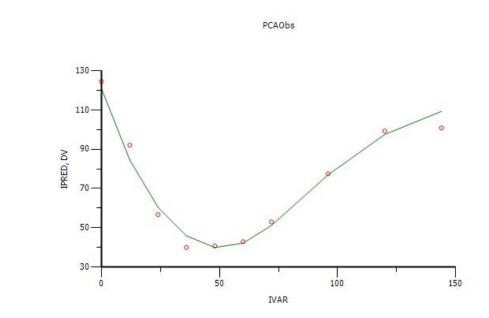
  test() {

2
         #dose delivered to central compartment
3
         dosepoint (A1)
4
         #initial warfarin concentration in central compartment
5
         Cw = A1 / V
6
         #differential equation for PK model
7
         deriv(A1 = -Ke * A1)
8
         #inhibitory function of warfarin
9
         Inh = 1 / (1 + (Cw/IC50)^n)
10
         #time switch for turnover model function
11
         double(flag)
12
         #sequence block: initial PCA with on/off switch (flag)
13 🖨
         sequence{
14
         PCA=P0;
15
         flag=0;
16
         sleep(Tlag);
17
         flag=1;
18
19
         #differential equation for PCA
20
         deriv(PCA = flag*(Kout*(PO*Inh - PCA)))
21
         #observed PCA with additive error model
22
         error(Eps=1)
23
         observe(PCAObs = PCA+Eps)
24
         #PK parameters as frozen fixed effects
25
         fixef(V(freeze) = c(, 1, ))
26
         fixef(Ke(freeze) = c(, 0.0228, ))
27
         #turnover model parameters as fixed effects with intitial estimates
28
         fixef(Tlag = c(, 1, ))
29
         fixef(IC50 = c(, .16, ))
30
         fixef(n = c(, 4, ))
31
         fixef(Kout = c(, .03, ))
32
         fixef(PO = c(, 124, ))
33 - }
```

Gabrielsson & Weiner, Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications, 5th Edition, Swedish Pharmacology Press (2015)

CERTARA

Demo



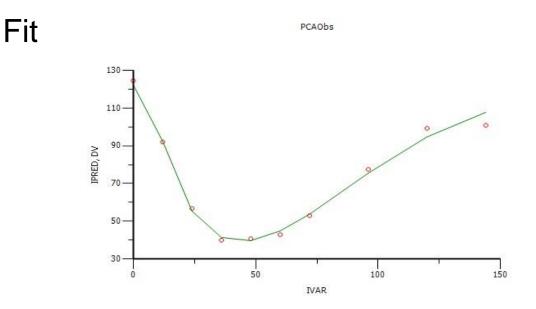
© Copyright 2015 Certara, L.P. All rights reserved.

- Fix PK parameters from previous study
- Develop an indirect response model
- Derive initial estimates
- Fit turnover models with and without lagtime to the data
- Review results

PD4: Base Turnover Model Results

Final Parameter Estimates

	Parameter	Estimate	Units	Stderr	CV%	2.5% CI	97.5% CI	Var. Inf. factor
1	V	1		0	0	1	1	0
2	Ke	0.0228		0	0	0.0228	0.0228	0
3	IC50	0.261284		0.020685502	7.9168652	0.20811048	0.31445752	1.5086E-05
4	n	2.99115		1.2677539	42.383495	-0.26769958	6.2499996	0.053706
5	Kout	0.030771		0.0048800615	15.859288	0.018226463	0.043315537	8.8425E-07
6	P0	120.951		4.0632499	3.3594182	110.50613	131.39587	0.63028
7	stdev0	4.4175		0.98778034	22.360619	1.878342	6.956658	


Gabrielsson & Weiner, Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications, 5th Edition, Swedish Pharmacology Press (2015)

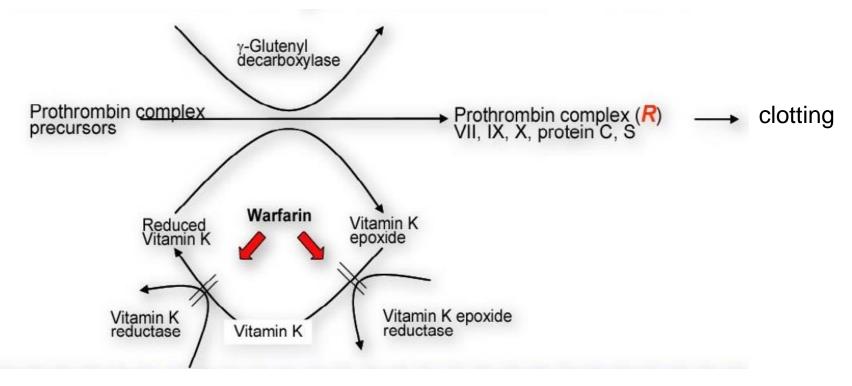
Fit

•

PD4: Base Turnover Model with Lag Time Results

Final Parameter Estimates

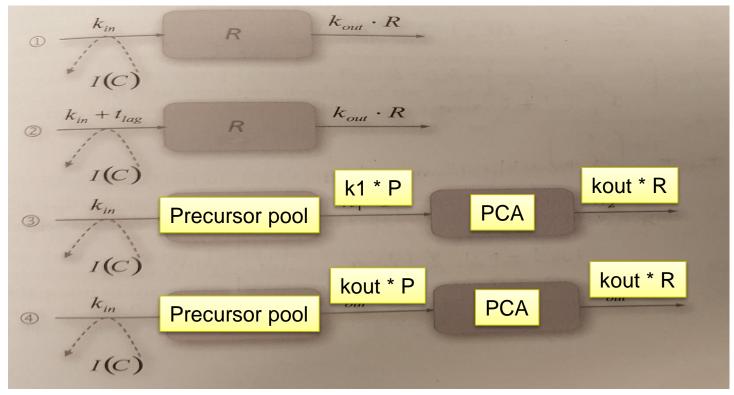
	Parameter	Estimate	Units	Stderr	CV%	2.5% CI	97.5% CI	Var. Inf. factor
1	V	1		0	0	1	1	0
2	Ke	0.0228		0	0	0.0228	0.0228	0
3	Tlag	6.54598		1.0782857	16.472487	3.5521802	9.5397798	0.13878
4	IC50	0.235077		0.013841243	5.8879613	0.19664757	0.27350643	1.9882E-05
5	n	1.51175		0.20318711	13.440523	0.94761239	2.0758876	0.0039438
6	Kout	0.0601138		0.0086395602	14.372008	0.036126545	0.084101055	8.2777E-06
7	PO	122.223		2.9644392	2.4254349	113.9924	130.4536	0.92002
8	stdev0	2.93445		0.65616309	22.360684	1.11265	4.75625	


PD4: Use Table function to view fitted lagtime

- In the model Run Options tab, set up a simulation table using the sequence statement.
- Use the result "Table01" to produce an overlay plot with more predicted points to view the lagtime

				130
p Results Verific	10			
	3			11 % °
tput Data		time	PCA	90-9
	1	0	122,223	2 -
rali	2	1	122,223	70- /
siduala	= 3	2	122.223	
condary condaryStder	4	3	122.223	50- 8 \$
ble01	5	4	122.223	3º] \6
cto	6	5	122.223	1 0.0~
etaCovariance	7	6	122.223	30
s	8	7	119,314	0 50 100 150 200
a Histogram	9		113.2	time, Time
DV ve IPRED	9		107 469	
DV vs IPRED			102 464	
pulation? Ge	s	ameters Input Opt itden: Centra Confidence Interval %		
er: 0.000			- C:	Add Table
11000			Si Si	
Sort Input?	A	Npha: 95	🗇 Pr	ed. Check Structural Parameter Estimates
Sort input?	A		🗇 Pr	ed. Check. Structural Parameter Estimates nulofion Times: peg(0,160.1)
Sort Input?	A		🗇 Pr	ad. Check. Structural Parameter Estimates nulation Times: seq(0,160,1) When covriset:
Sort Input?	A		🗇 Pr	ed. Check. Structural Parameter Estimates nulofion Times: seq(0,160.1)

PD4: Develop a mechanistic precursor pool model


- Warfarin is often prescribed as an anticoagulant.
- Warfarin acts indirectly to prevent blood clotting, by inhibiting the production of reduced Vitamin K, that is involved in the formation of the Prothrombin Complex, as shown below:

PD4: Develop a mechanistic precursor pool model

- Models 1 & 2 are the basic turnover model both with and without a lag time.
- Warfarin acts one step upstream, inhibiting the formation of reduced Vitamin K, which mediates the formation of PCA from the precursor pool.
- Model 3 is a precursor pool model replacing the lag time with a transit compartment with its own exit rate constant k1.
- Model 4 is similar to 3, but k1 is set equal to kout.

Gabrielsson & Weiner, Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications, 5th Edition, Swedish Pharmacology Press (2015)

CERTARA

PD4: Precursor Pool Model 3: PML Code

```
-
    test(){
2
        #Warfarin PK
3
        deriv(A1 = -Ke * A1)
4
        dosepoint (A1)
5
        CW = A1 / V
6
        #Inhibitory function of warfarin
7
        Inh = 1 / (1 + (Cw/IC50)^n)
8
        #sequence: initial conditions for PCA and its Precursor pool
9
        sequence{Precur=P0}
10
         sequence{PCA=P0}
11
        #differential equations for PCA and Precursor pool
12
        deriv(Precur=P0*Kout*Inh - K1*Precur)
13
        deriv(PCA=K1*Precur - Kout*PCA)
14
         #observed PCA with additive error model
15
        error(Eps=1)
16
         observe(PCAObs = PCA + Eps)
17
         #PK parameters as frozen fixed effects
18
        fixef(V(freeze) = c(, 1, ))
19
        fixef(Ke(freeze) = c(, 0.0228, ))
20
        #Precursor pool model parameters with initial estimates
21
        fixef(IC50 = c(, .16, ))
22
        fixef(n = c(, 4, ))
23
        fixef(K1 = c(0, .06, ))
24
        fixef(Kout = c(0, .06, ))
25
         fixef(P0 = c(, 124, ))
26
```

оавлевзон а менен, планнасомненсано планнасосунанис вака Анајузіз - сонсерьзано Аррисанонз, от сишон, омесізн планнасосур Press (2015)

PD4: Precursor Pool Model 4: PML Code

```
1

test() {

2
        #Warfarin PK
3
        dosepoint (A1)
4
        deriv(A1 = -Ke * A1)
5
        CW = A1 / V
6
        #inhibitory function of warfarin
7
        Inh = 1 / (1 + (Cw/IC50)^n)
8
        #set Kloss = Kout
9
        Kloss=Kout
10
         #Sequence: initial conditions for PCA and its precursor pool
11
        sequence{Precur=P0}
  E
12
  白
        sequence { PCA=P0 }
13
         #differential equations for PCA and precursor pool
14
         deriv(Precur=P0*Kout*Inh - Kloss*Precur)
15
         deriv(PCA=Kloss*Precur - Kout*PCA)
16
         #observed PCA with additive error model
17
         error(Eps=1)
18
         observe(PCAObs = PCA+Eps)
19
         #PK parameters as frozen fixed effects
20
         fixef(V(freeze) = c(, 1, ))
21
         fixef(Ke(freeze) = c(, 0.0228, ))
22
         #Precursor pool Kloss eq Kout model parameters with initial estimates
23
        fixef(IC50 = c(, .16, ))
24
        fixef(n = c(, 4, ))
25
         fixef(Kout = c(, .06, ))
26
         fixef(PO = c(, 124, ))
27
```


Questions?

PML School: Materials

- Each model will be made available in Certara Forum
 - Link to live webinar and presentation slides
 - https://support.certara.com/forums/forum/34-pml-school/
 - Model text as file download
 - Can be imported into Phoenix model object to be run on a new dataset
 - Questions and comments can be exchanged in the Forum
 - Or can be entered into the Certara Support portal at:
 - https://support.certara.com/support
 - Or can be sent as emails to <u>support@certara.com</u>
- PML School on Twitter: @PML_School
 - Notifications on updates of materials, Q&A and discussions
 - Announcements of new sessions
- PML School on Youtube:
 - <u>https://www.youtube.com/user/CertaraLP/videos</u>

Certara University

- A wide range of On Demand and Classroom courses are available through Certara University:
 - Introductory, intermediate and advanced instruction in Phoenix WinNonlin, Population Modeling using NLME, IVIVC Toolkit
 - Fundamentals of Pharmacokinetics and Pharmacodynamics
 - Noncompartmental data analysis
 - Programming Bootcamp
 - Partner Lectures and Webinar series
- Please visit our <u>Certara University</u> web site for more information

Coming up...

Turnover Model 4: IV Infusions Apply a turnover model to multiple IV dosing response data June 22, 2017 | 10am EST Presenter: Bernd Wendt

- Dr. Wendt will present PD7, which covers a turnover model, using stimulation of loss, at different dose levels.
- Register for future PML School webinars here:
- <u>https://www.certara.com/software/pkpd-modeling-and-simulation/pml-school/</u>

