
PML Library: PD9 - Turnover models with repeated dosing

- Characterize the PD of a new anxiolytic compound Zooparc[®] after repeated po dosing
- Data were collected during a Phase II study in psychiatric patients at 5mg and 25 mg dose levels
- Establish turnover characteristics of a biomarker.

PD9: Exploratory Data Analysis

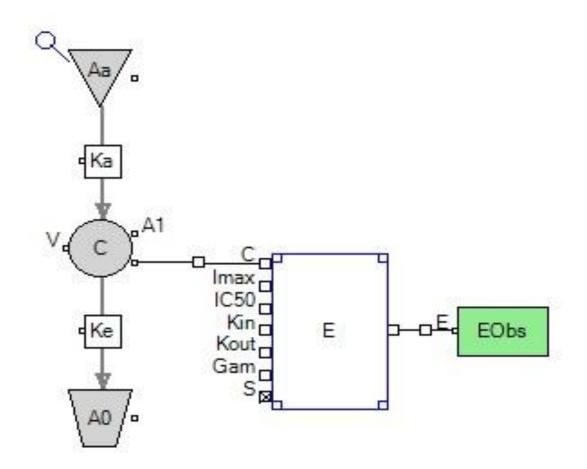
 Observed Response-Time data following repeated QD administration of Zooparc[®] at 5mg and 25mg dose levels

- The pharmacokinetics of Zooparc[®] have been characterized in a previous study.
- Extravascular 1-compartment model:
- dC/dt = Dose*ka/V*(ka-ke)
 - Ka = absorption rate constant, 1.1 1/hr
 - Ke = elimination rate constant, 0.128 1/hr
 - V = volume of distribution, 5 L/kg
- Solve concentration function at different time points for a given dose level.

- Rate of production is inhibited by the function I(C), assuming Imax = 1
- Animal studies have shown that complete inhibition of response is possible, i.e. I(C) = 0 at high concentrations
- Indirect response is modeled using dR/dt = kin*I(C) kout*R
 - Kin = zero order rate of production
 - Kout = first order rate of loss
 - I(C) = mechanistic inhibition of Kin

- I(C)- typical inhibitory Imax function
- Inhibitory function $I(C) = 1 Imax^*C^{\gamma} / (IC50^{\gamma} + C^{\gamma})$
 - Imax = maximum inhibitory response
 - IC50 = concentration at which 50% of maximum inhibition occurs
 - Gamma = exponent for sigmoid Imax model

- Full model, substituting in the mechanistic inhibition function:
- $dR/dt = Kin * (1 Imax * C^{\gamma}/(C^{\gamma} + IC50^{\gamma})) Kout * R$
- Get final estimates for the following parameters:
 - Kin = zero order rate of production
 - Kout = 1^{st} order loss
 - Imax = maximum inhibition
 - IC50 = concentration at which 50% of maximum inhibition occurs
 - Gamma = exponent for sigmoid Imax function



PD9: Built-in PK/indirect: inhibition of production

Population?	Structure Parameters Input Opt	tions Initial Estin	nates Run Options Model Text Plots no warnings
Type: PK/Indirect			Set WNL Model
Parameterization:	Absorption: Num Compartments:	Parameters:	Statements:
Micro 🔫	Extravascular 🔻 1 🗸	, Ka	deriv(Aa = - Ka * Aa)
🔲 tlag?	Ka = Ke ? Elim. Cpt.?	V	deriv(A1 = Ka * Aa - Ke * A1)
Closed form?		Ke	deriv(E = Kin * (1 - Imax * C ^ gam / (C ^ gam + IC50 ^ gam)) -
Infusions possible?	Freeze PK?	Kin	dosepoint(Aa)
Effect Cpt?	I HOULD FIRE	Kout	C = A1 / V
Indirect: Inhib. L	Limited V OF Build-up	Imax	sequence{E = Kin / Kout}
(Exponent Freeze Indirect?	IC50	error(EEps = 1)
Residual Error:		gam	observe(EObs = E + EEps)
E EObs EEps =	Additive BQL?		
Stdev: 1	0.81236 Accept		
Free			

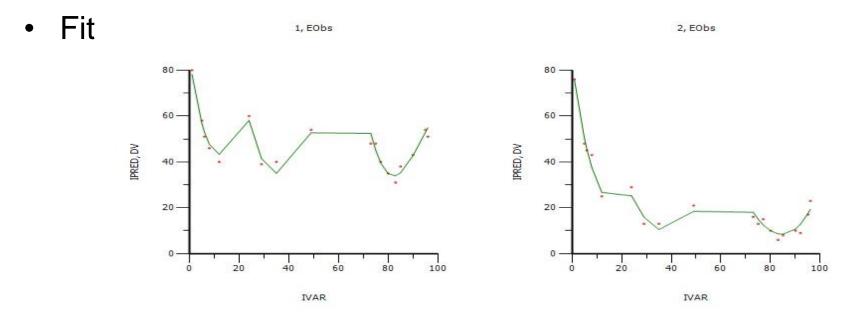
PD9: Graphical Model

PD9: Indirect Response Model: PML Code

```
test() {
2
        # differential equations for PK model
3
        deriv(Aa = - Ka * Aa)
4
        deriv(A1 = Ka * Aa - Ke * A1)
5
        # differential equation for Indirect Response model
6
        deriv(E = Kin * (1 - Imax * C ^ gam / (C ^ gam + IC50 ^ gam)) - Kout * E)
7
        # extravascular dose administration
8
        dosepoint (Aa)
9
        # concentration in the central compartment
10
        C = A1 / V
11
        # baseline response R0
12 由
        sequence {E = Kin / Kout}
13
        # observed response and error model
14
        error(EEps = 1)
15
        observe(EObs = E + EEps)
16
        # PK parameters as frozen fixed effects
17
        fixef(Ka(freeze) = c(, 1.1, ))
18
        fixef(V(freeze) = c(, 5, ))
19
        fixef(Ke(freeze) = c(, 0.128, ))
20
        # Indirect response parameters with initial estimates
21
        fixef(Kin = c(, 4.8, ))
22
        fixef(Kout = c(, 0.06, ))
23
        fixef(Imax(freeze) = c(, 1, ))
24
        fixef(IC50 = c(, 0.25, ))
25
        fixef(gam = c(, 2, ))
26
```


PD9: Initial Estimates

- R0 = 80, from exploratory plot response at time = 0
- Onset slope = -kout = $(\ln(R1) \ln(R2)) / (t1 t2)$
- -Kout = $\ln(80/48) / (0-8) = -0.06 \text{ hr}^{-1}$
- Kin = R0*kout = $80*0.06 = 4.8 \text{ hr}^{-1}$
- Imax = 1
- IC50 is obtained by first finding the time of 50% inhibition, then solving the PK concentration function at that same time point. IC50 = 0.25 mg/L
- Gamma (exponent) = 2, obtained from Initial Estimates tab



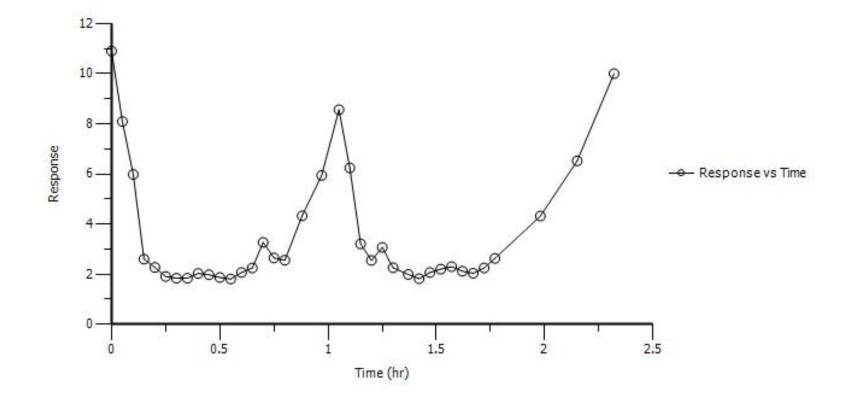
Example 1 Demo

© Copyright 2015 Certara, L.P. All rights reserved.

PD9: Example 1 Results

• Final Parameter Estimates

Parameter	Estimate	Units	Stderr	CV%	2.5% CI	97.5% CI	Var. Inf. factor
Ка	1.1	1/hr	0	0	1.1	1.1	0
V	5		0	0	5	5	0
Ke	0,128		0	0	0,128	0.128	0
Kin	8.80231		0.31140006	3.5377084	8.1680101	9.4366099	0.059228
Kout	0.105859		0.0028807291	2.7212888	0.099991159	0.11172684	4.6806E-06
Imax	1		0	0	1	1	0
IC50	0.244842		0.0053673085	2.1921519	0.23390917	0.25577483	3.2596E-05
gam	1.38354		0.036746428	2.6559715	1.3086901	1.4583899	0.001387
stdev0	2.57322		0.0088998876	0.34586579	2.5550916	2.5913484	


Example 2 Model 1: Inhibition of Production

© Copyright 2015 Certara, L.P. All rights reserved.

Example 2 Exploratory Data Analysis

• Observed Response-Time data following two rapid infusions

Example 2 Objectives

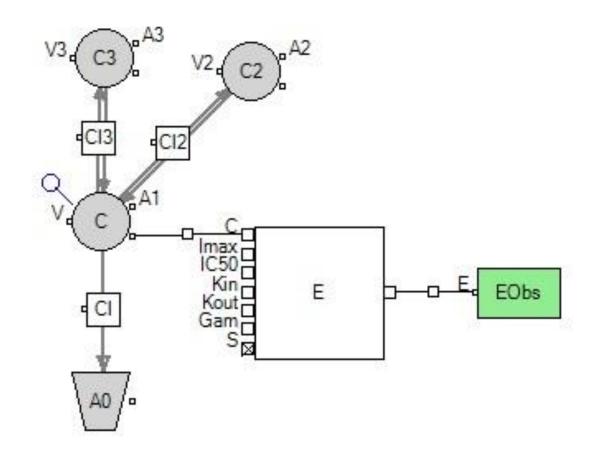
- Mechanism of action is not known. Develop two different Turnover models for Response-Time data.
- Model 1: inhibition of production
 dR/dt = kin * I(C) kout * R
- Model 2: stimulation of loss
 - dR/dt = kin kout * S(C) * R
- Compare the models using parameter precision and diagnostics (AIC, BIC, -2LL)

Example 2 PK parameters as fixed effects

- The PK of compound 2 has been characterized in a previous study.
- IV infusion 3-compartment model with clearance parameters:
 - dA1/dt = -CI * C CI2 * (C C2) CI3 * (C C3))
 - dA2/dt = CI2 * (C C2))
 - dA3/dt = CI3 * (C C3))
 - C = A1 / V
 - C2 = A2 / V2
 - C3 = A3 / V3
- PK parameter estimates:
 - V = 0.7633
 - V2 = 1.72876
 - V3 = 3.43857
 - CI = 6.2417
 - Cl2 = 5.4595
 - Cl3 = 0.85806

- I(C)- typical inhibitory Imax function
- Inhibitory function $I(C) = 1 Imax^*C^{\gamma} / (IC50^{\gamma} + C^{\gamma})$
 - Imax = maximum inhibitory response
 - IC50 = concentration at which 50% of maximum inhibition occurs
 - Gamma = exponent for sigmoid Imax model

- Full model, substituting in the mechanistic inhibition function:
- $dR/dt = Kin * (1 Imax * C^{\gamma}/(C^{\gamma} + IC50^{\gamma})) Kout * R$
- Get final estimates for the following parameters:
 - Kin = zero order rate of production
 - Kout = 1^{st} order loss
 - Imax = maximum inhibition
 - IC50 = concentration at which 50% of maximum inhibition occurs
 - Gamma = exponent for sigmoid Imax function



Ex2: Built-in PK/indirect: inhibition of production

Population?	Structure Parameters Input Option	ns 🗌 Initial Estin	nates Run Options Model Text Plots no warnings
Type: PK/Indirect		Demostered	Set WNL Model
1	Absorption: Num Compartments: Extravascular • 1 • Ka = Ke ? Elim. Cpt.? Freeze PK? mited • OF Build-up	Parameters: Ka V Ke Kin Kout Imax	Statements: deriv(Aa = - Ka * Aa) deriv(A1 = Ka * Aa - Ke * A1) deriv(E = Kin * (1 - Imax * C ^ gam / (C ^ gam + IC50 ^ gam)) - dosepoint(Aa) C = A1 / V sequence{E = Kin / Kout}
Ex Residual Error:	Additive BQL? 0.81236 Accept	IC50 gam	error(EEps = 1) observe(EObs = E + EEps)

Ex2: Model 1 Graphical

Ex2: Model 1 inhibition of production: PML Code

```
1
  test() {
2
         # differential equations for the PK model
         deriv(A1 = - C1 * C - C12 * (C - C2) - C13 * (C - C3))
3
4
         deriv(A2 = C12 * (C - C2))
5
         deriv(A3 = C13 * (C - C3))
6
         # differential equation for Indirect Response model
7
         deriv(E = Kin * (1 - Imax * C ^ gamma / (C ^ gamma + IC50 ^ gamma)) - Kout * E)
8
         # IV dose administration
9
         dosepoint (A1)
10
         # concentrations in central and peripheral compartments
11
         C = A1 / V
12
        C2 = A2 / V2
13
        C3 = A3 / V3
14
         # baseline response R0
15 山
         sequence{E = Kin / Kout}
16
         # observed response and error model
17
         error(EEps = 1)
18
         observe(EObs = E + EEps)
19
         # PK parameters as frozen fixed effects
20
         fixef(V(freeze) = c(, 0.7633, ))
21
         fixef(V2(freeze) = c(, 1.72876, ))
22
         fixef(V3(freeze) = c(, 3.43857, ))
23
         fixef(Cl(freeze) = c(, 6.2417, ))
24
         fixef(Cl2(freeze) = c(, 5.4595, ))
25
         fixef(C13(freeze) = c(, 0.85806, ))
26
         # Indirect response parameters with initial estimates
27
         fixef(Kin = c(, 48.4, ))
28
         fixef(Kout = c(, 4.4, ))
29
         fixef(Imax = c(, 1, ))
30
         fixef(IC50 = c(, 300, ))
31
         fixef(gamma = c(, 4, ))
32
```

Gabrielsson & Weiner, Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications, 5th Edition, Swedish Pharmacology Press (2015)

CERTARA

Ex2 Model 1: Initial Estimates

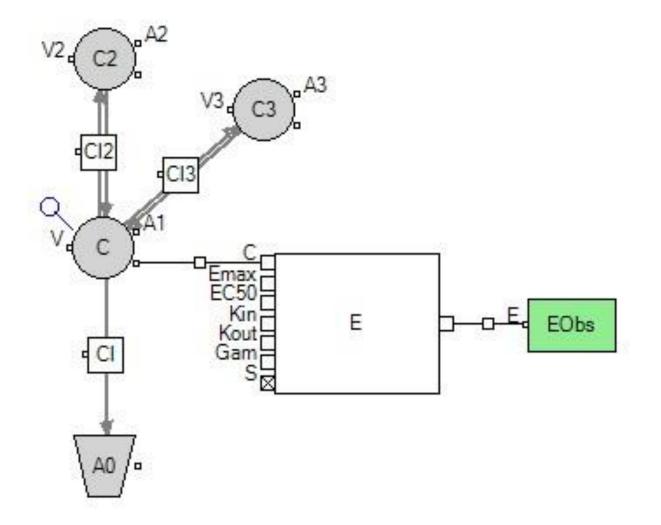
- R0 = 11, from exploratory plot response at time = 0
- Onset slope = -kout = $(\ln(R1) \ln(R2)) / (t1 t2)$
- -Kout = $\ln(7.5/2.5) / (0-0.25) = -4.4 \text{ hr}^{-1}$
- Kin = R0*kout = $11*4.4 = 48.4 \text{ hr}^{-1}$
- Imax = 1 Rmin/R0 = 1 2/11 = 0.82
- IC50 is obtained by first finding the time of 50% inhibition, then solving the PK concentration function at that same time point. IC50 = 250 mg/L
- Gamma (exponent) = 10, obtained from Initial Estimates tab

Population?	General	Parameters	Input Options	Initial Estimates	Run Options	Model Text	Pl <mark>o</mark> ts no v	varnings
Method: Naive-poole N Iter: 1000 V Sort Input? Max ODE: matrix		the same y	5	Run Mode Simple Simulation	Ad	e01 x V	rameter 0,2.5,0.1)	
Max ODE. (matrix	expone 🔻	Partial Deriv d P. D. Time Ste Advanced	eps: 20		Whe	n covrset: n dose: n observe: bles: C,E		ght 🗌 IWRES

Example 2 Model 2: Stimulation of Loss

© Copyright 2015 Certara, L.P. All rights reserved.

- S(C) typical stimulatory Emax function
- Stimulatory function $S(C) = (1 + Emax * C^{\gamma}/(C^{\gamma} + EC50^{\gamma}))$
 - Emax = maximum stimulatory response
 - EC50 = concentration at which 50% of maximum stimulation occurs
 - Gamma = exponent for sigmoid Imax model


- Full model, substituting in the mechanistic inhibition function:
- $dR/dt = Kin Kout * (1 + Emax * C^{\gamma}/(C^{\gamma} + EC50^{\gamma})) * R$
- Get final estimates for the following parameters:
 - Kin = zero order rate of production
 - Kout = 1^{st} order loss
 - Emax = maximum stimulation
 - EC50 = concentration at which 50% of maximum stimulation occurs
 - Gamma = exponent for sigmoid Emax function

Population?	Structure	Parameters	Input Options	Initial Estin	nates	Run Options	Model Text	Plots	no warnings
Type: PK/Indirect	•						Set WNL Mod	el	
Parameterization:	Absorption:	Num Con	npartments:	Parameters:	State	ements:			
Clearance -	Intravenous	▼ 3	-	۷	deriv	r(A1 = - Cl * C - Cl2	* (C - C2) - Cl3 *	(C - C3))	
Saturating?	tlag?	Elim	. Cpt.?	V2	deriv	r(A2 = Cl2 * (C - C2)))		
Closed form?				V3	deriv(A3 = Cl3 * (C - C3))				
Infusions possible	e? 🔽 Fre	eeze PK?		a	deriv	r(E = Kin - Kout * (1	+ Emax * C^gan	n / (C^ga	m +
Effect				CI2	dose	point(A1)			
	.imited 🔻	OF L	oss	CI3	C = /	A1/V			
	kponent	Freeze Ind		Kin	C2 =	A2 / V2			
Residual Error:	content			Kout	C3 =	A3 / V3			
E EObs EEps =	Additive	BQL?		Emax	sequ	ience{E = Kin / Ko	ut}		
Stdev: 1	0.5683		7	EC50	error	(EEps = 1)			
E Fre		Accept		gam	obse	erve(EObs = E + EE	Eps)		

Ex2: Model 2 Graphical

Ex2: Model 2 stimulation of loss: PML Code

```
  test() {

2
         # differential equations for the PK model
3
         deriv(A1 = - C1 * C - C12 * (C - C2) - C13 * (C - C3))
4
         deriv(A2 = C12 * (C - C2))
5
         deriv(A3 = C13 * (C - C3))
6
         # differential equation for Indirect Response model
7
         deriv(E = Kin - Kout * (1 + Emax * C^gamma / (C^gamma + EC50^gamma)) * E)
8
         # IV dose administration to central compartment
9
         dosepoint (A1)
10
         # concentrations in central and peripheral compartments
11
         C = A1 / V
12
        C2 = A2 / V2
13
         C3 = A3 / V3
14
         # baseline response R0
15 由
         sequence{E = Kin / Kout}
16
         # observed response with error model
17
         error(EEps = 1)
18
         observe(EObs = E + EEps)
19
         # PK parameters as frozen fixed effects
20
         fixef(V(freeze) = c(, 0.7633, ))
21
         fixef(V2(freeze) = c(, 1.72876, ))
22
         fixef(V3(freeze) = c(, 3.43857, ))
23
         fixef(Cl(freeze) = c(, 6.2417, ))
24
         fixef(Cl2(freeze) = c(, 5.4595, ))
25
         fixef(Cl3(freeze) = c(, 0.85806, ))
26
         # Indirect response parameters with initial estimates
27
         fixef(Kin = c(, 48.4, ))
28
         fixef(Kout = c(, 4.4, ))
29
         fixef(Emax = c(, 4.5, ))
30
         fixef(EC50 = c(, 350, ))
31
         fixef(gamma = c(, 1, ))
32 - 1
```


Ex2 Model 2: Initial Estimates

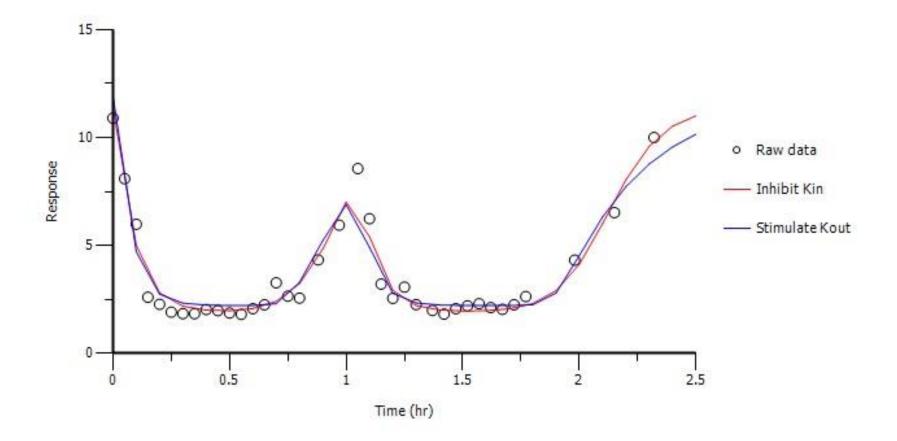
- R0 = 11, from exploratory plot response at time = 0
- Onset slope = -kout = $(\ln(R1) \ln(R2)) / (t1 t2)$
- -Kout = $\ln(7.5/2.5) / (0-0.25) = -4.4 \text{ hr}^{-1}$
- Kin = R0*kout = 11*4.4 = 48.4 hr⁻¹
- Emax = R0/Rmin 1 = 11/2 1 = 4.5
- EC50 is obtained by first finding the time of 50% recovery, then solving the PK concentration function at that same time point. EC50 = 350 mg/L
- Gamma (exponent) = 10, obtained from Initial Estimates tab

Example 2 Demo

© Copyright 2015 Certara, L.P. All rights reserved.

• Overall

-	Source	RetCode	-2LL	AIC	BIC	nParm
1	Model inh Kin	1	44.87176	56.87176	66.537267	6
2	Model stim Kout	1	63.19406	75.19406	84.859567	6


• Final Parameter Estimates

	Source	Parameter	Estimate	CV%
7	Model stim Kout	EC50	309.902	5.4251966
8	Model stim Kout	Emax	4.38766	8,6242905
9	Model inh Kin	gamma	7.0629	12.506123
10	Model stim Kout	gamma	21.533	88.677962
11	Model inh Kin	IC50	244.203	2.2904303
12	Model inh Kin	Imax	0.830643	1.423949
13	Model inh Kin	Kin	143.314	8.7613725
14	Model stim Kout	Kin	34.3159	10.159728
15	Model inh Kin	Kout	12.5528	7.2383399
16	Model stim Kout	Kout	2.87789	10.617335
17	Model inh Kin	stdev0	0.443719	11.6247
18	Model stim Kout	stdev0	0.56838	11.624738

Example 2: Overlay Plot

• Overlay predicted responses for both models with observed data:

Questions?

PML School: Materials

- Each model will be made available in Certara Forum
 - Link to live webinar and presentation slides
 - https://support.certara.com/forums/forum/34-pml-school/
 - Model text as file download
 - Can be imported into Phoenix model object to be run on a new dataset
 - Questions and comments can be exchanged in the Forum
 - Or can be entered into the Certara Support portal at:
 - https://support.certara.com/support
 - Or can be sent as emails to <u>support@certara.com</u>

PML School: Channels

- Notifications on updates of materials, Q&A and discussions
- Announcements of new sessions
 - PML School on LinkedIn:
 - If you have a LinkedIn Account, please join our new LinkedIn Group:
 - https://www.linkedin.com/groups/8614342
 - PML School on Twitter: @PML_School
 - PML School on Youtube:
 - https://www.youtube.com/user/CertaraLP/videos

Certara University

- A wide range of On Demand and Classroom courses are available through Certara University:
 - Introductory, intermediate and advanced instruction in Phoenix WinNonlin, Population Modeling using NLME, IVIVC Toolkit
 - Fundamentals of Pharmacokinetics and Pharmacodynamics
 - Noncompartmental data analysis
 - Programming Bootcamp
 - Partner Lectures and Webinar series
- Please visit our <u>Certara University</u> web site for more information

Dose-response-time Analysis I-IV Analyze dose-response-time data with an instantenous effect model July 27, 2017 | 10am EST Presenter: Bernd Wendt

© Copyright 2015 Certara, L.P. All rights reserved.