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a b s t r a c t

Given the complexity of pharmacological challenge experiments, it is perhaps not surprising that design
and analysis, and in turn interpretation and communication of results from a quantitative point of view, is
often suboptimal. Here we report an inventory of common designs sampled from anti-inflammatory,
respiratory and metabolic disease drug discovery studies, all of which are based on animal models of dis-
ease involving pharmacological and/or patho/physiological interaction challenges. The corresponding
data are modeled and analyzed quantitatively, the merits of the respective approach discussed and infer-
ences made with respect to future design improvements. Although our analysis is limited to these disease
model examples, the challenge approach is generally applicable to the vast majority of pharmacological
intervention studies.

In the present five Case Studies results from pharmacodynamic effect models from different therapeutic
areas were explored and analyzed according to five typical designs. Plasma exposures of test compounds
were assayed by either liquid chromatography/mass spectrometry or ligand binding assays. To describe
how drug intervention can regulate diverse processes, turnover models of test compound–challenger
interaction, transduction processes, and biophase time courses were applied for biomarker response in
eosinophil count, IL6 response, paw-swelling, TNFa response and glucose turnover in vivo. Case Study 1
shows results from intratracheal administration of Sephadex, which is a glucocorticoid-sensitive model
of airway inflammation in rats. Eosinophils in bronchoalveolar fluid were obtained at different time points
via destructive sampling and then regressed by the mixed-effects modeling. A biophase function of the
Sephadex time course was inferred from the modeled eosinophil time courses. In Case Study 2, a mouse
model showed that the time course of cytokine-induced IL1b challenge was altered with or without drug
intervention. Anakinra reversed the IL1b induced cytokine IL6 response in a dose-dependent manner. This
Case Study contained time courses of test compound (drug), challenger (IL1b) and cytokine response (IL6),
which resulted in high parameter precision. Case Study 3 illustrates collagen-induced arthritis progression
in the rat. Swelling scores (based on severity of hind paw swelling) were used to describe arthritis progres-
sion after the challenge and the inhibitory effect of two doses of an orally administered test compound. In
Case Study 4, a cynomolgus monkey model for lipopolysaccharide LPS-induced TNFa synthesis and/or
release was investigated. This model provides integrated information on pharmacokinetics and in vivo
potency of the test compounds. Case Study 5 contains data from an oral glucose tolerance test in rats,
where the challenger is the same as the pharmacodynamic response biomarker (glucose). It is therefore
convenient to model the extra input of glucose simultaneously with baseline data and during intervention
of a glucose-lowering compound at different dose levels.
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Typically time-series analyses of challenger- and biomarker-time data are necessary if an accurate and
precise estimate of the pharmacodynamic properties of a test compound is sought. Erosion of data, result-
ing in the single-point assessment of drug action after a challenge test, should generally be avoided. This is
particularly relevant for situations where one expects time-curve shifts, tolerance/rebound, impact of dis-
ease, or hormetic concentration–response relationships to occur.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction Therefore, examples of challenge tests are given schematically
Ever since the beginning of modern pharmacology, scientists
have sought to create animal models for use in translational
research to address various disturbances in bodily function. In vivo
disease models include basically any imaginable variable for a
wide array of physiological, (neuro)endocrine, neurological, psy-
chological, and other disorders. Symptoms or syndromes have
been introduced in otherwise healthy animals or strains by various
means: acute or chronic treatment with pharmacological or chem-
ical/toxicological agents, chemical, mechanical or other lesion-induc-
ing techniques, genetic or inducible knockout technologies, not to
mention a variety of behavioral induction procedures (e.g., environ-
mental, cognitive, stress), or even diet-induced aberrations. Some of
these approaches have been very successful, others less so. In this
paper, we focus on examples of animal models of disease involving
pharmacological and/or patho/physiological interaction challenges.

The ‘challenge’ design is a central theme in many pharmacological
studies in which the pharmacodynamic (PD) outcome of provocation
is modified by intervention with a test compound (‘x, y . . .’, etc.). Such
studies are found across various indications, including respiratory
disease (Sephadex-induced eosinophil count), arthritis (collagen-
induced paw swelling), inflammation (LPS- or IL1b-induced TNFa or
IL6 biomarker responses), diabetes (blood-glucose handling after
intravenous or oral glucose doses), and the central nervous system
(seizure thresholds using pentylenetetrazol), to mention just a few
(Källstrom et al., 1985; Luross and Williams, 2001; Haddad et al.,
2002; Homayoun et al., 2002; Hegen et al., 2008; Lon et al., 2012;
Lon et al., 2013; Nolan et al., 2013; Pacini et al., 2013). A challenge
design obviously has utility not only for the primary, desired PD
action, but also to define the propensity for safety-related PD read-
outs in the profile of a select agent. In turn, a robust understanding
of the safety margins for a novel candidate therapeutic is vitally
important for its potential clinical usefulness, i.e., benefit/risk ratio.

The challenge design is sometimes aimed at acutely mimicking
a chronic disease scenario. Sometimes the test compound is already
present when the challenge begins, whereas other times, it is
administered post-challenge (Bueters et al., 2009). The variability
in PD outcome variables is sometimes large or uncontrolled (cf.
Case Study 1). This is often tackled by increasing the number of
measurements (n). Still, many reports rely on a single time-point
design, scarce or suboptimal data, or fail to account for hormetic
concentration–response relationships with regard to compound
ranking. Important/pivotal determinants of a successful quantita-
tive design and analysis are:

� Adequate test compound dose/concentration range (that sepa-
rates the biomarker response efficiently).
� Adequate challenge dose/concentration (that results in a con-

tinuous, robust, repeatable and realistic biomarker response-
time course).
� Well-spaced biomarker response – both time- and amplitude-

wise.
� Information on the lack or presence of hormetic concentration–

response relationships (i.e., a non-monotonic concentration
response with specific response features, e.g., a J/U-shaped or
inverted U-shaped concentration response; cf. Calabrese, 2013).
in Case Studies 1–5 (Fig. 1). Case Study 1 (Sephadex challenge on
eosinophil biomarker response) includes vehicle control data con-
taining and reflecting basic handling and procedural stress, but no
test compound intervention. Case Study 2 has several time courses
of test compound and a full challenge time course of IL1b and the
IL6 biomarker response. Case Study 3 contains several time courses
of test compound and accompanying time courses of the bio-
marker (swelling score) with and without test compound, but lacks
information about the time course of the challenger (Freund’s
adjuvant). Case Study 4 covers several time courses of test com-
pound and corresponding time courses of the biomarker response
(TNFa), but no information about the challenger (lipopolysaccha-
ride; LPS). Case Study 5 is the oral glucose tolerance test (OGTT)
and comprises several time courses of test compound, as well as
blood glucose response in vehicle control and test compound
groups. In Case Study 5, the levels of the challenger agent (glucose)
also represent the actual PD biomarker readout, and the time
courses of the challenger and the biomarker response are thus
identical.

We will demonstrate some of the issues related to modeling the
different kinds of setup. To illustrate the pivotal parts we first
characterize the plasma time-course of the test compound, when
available (Case Studies 2–5). Then we characterize the time-course
of challenger (Case Studies 2 and 5, e.g., IL1b). If the challenger is
not (or cannot be) measured, a biophase function has to be
estimated (Case Studies 1, 3 and 4). Finally, the time-course of
the pivotal PD biomarker response (Case Studies 1–5, e.g., IL6) is
studied at baseline and after combinations of challenger in the
presence or absence of test compound intervention (Fig. 1).
2. Case Study descriptions

The five Case Studies represent different pharmacological
in vivo models with varying information content from a quantita-
tive modeling point of view. Fig. 1 and Table 1 summarize the
availability of data and the particular characteristics of each Case.
2.1. Case Study 1: challenger time-course unknown, no drug
intervention

2.1.1. Rationale
The intratracheal (i.t.) rat Sephadex model is a model of acute

airway inflammation, with a response dominated by eosinophils.
The model has been used to screen drugs for treating asthma
(Bondesson, 1997; Evaldsson et al., 2011). Accordingly, Sepha-
dex-induced eosinophilia has been shown to be reduced by pre-
treatment with budesonide (Källstrom et al., 1985).

Case Study 1 (Fig. 2) illustrates how eosinophils increase in the
bronchoalveolar fluid collected by bronchoalveolar lavage (BAL)
following i.t. administration of Sephadex as a challenge agent
(Källstrom et al., 1985; Haddad et al., 2002). Samples are collected
at different time-points after the Sephadex challenge and the
number of eosinophils in bronchoalveolar fluid (BAL) is recorded.
However, as this PD biomarker response must be obtained post-
mortem, it follows that data from each rat by necessity represents
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Fig. 1. Schematic diagram of the selection, design and diversity of the five Case Studies used in this report. The left-hand column of concentration–time graphs symbolizes the
availability (or not) of test compound plasma concentrations. The middle row time-plots symbolize availability (or not) of the plasma challenger time course. The right hand
column of time-plots represents availability of the biomarker response R used to evaluate the pharmacodynamic (PD) properties of the test compound.

Table 1
Overview of experimental designs of the five Case Studies including challenge compounds, test compounds and PD biomarker responses.

Case
Study

Challenge
compound

Animal
model

Test
compound

PD effect
biomarker

Comments

1 Sephadex Rat – Eosinophil count Lacks challenger time course(s); destructive sampling design; no drug intervention
2 IL1b Mouse Anakinra IL6 Includes challenger, test compound, as well as PD response time courses
3 Collagen Rat Compound X Paw swelling Lacks challenger time courses
4 Lipopolysaccharide Monkey Compound Y TNFa Lacks challenger time courses
5 Glucose Rat Compound Z Glucose Oral glucose tolerance test OGTT model; challenger and PD biomarker identical
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a single time-point only. This Case Study represents a mixed-
effects modeling approach in drug discovery when data are
obtained from destructive sampling. The intent was to quantify
the turnover of eosinophils triggered by a Sephadex challenge in
the absence of a time-course of the latter.

2.1.2. Materials and methods
2.1.2.1. Chemicals. Sephadex G-100 Superfine (Sigma–Aldrich,
Sweden) was dissolved in physiological saline (9 mg mL�1 NaCl)
to a final concentration of 10 mg mL�1. The solution was prepared
2 h prior to administration.

2.1.2.2. Animals. Healthy male non-fasted Sprague–Dawley rats
(226–250 g, Charles River) were used. Data were collected from a
total of 268 animals from 4 separate studies.

2.1.2.3. In vivo model. The rats were lightly anaesthetized (2–3 min,
4% isoflurane in O2) and placed in a supine position. Sephadex
(10 mg mL�1) was administered intra-tracheally at a volume of
200 lL per rat. The rats were returned to their cages in an upright
position.

Individual rats were euthanized with an intraperitoneal
injection of 1.0 mL pentobarbital (60 mg mL�1, Apoteksbolaget,
Sweden) at different times up to 1 week after dosing. The trachea
was exposed and a syringe connected to a polyethylene tube
(PE120) was inserted into the trachea through a cut between two
upper cartilage rings. The tube was secured with a silk suture.
Lavage of the lungs was done manually using a volume of 4 mL
of RT PBS (w/o Ca2+ and Mg2+) in a 2� in/2� out manner. The
obtained BAL fluid was centrifuged (Sorvall Rotanta 46R,
1200 rpm, 10 min, 4 �C). The pellet was re-suspended in 0.5 mL
of PBS and the total and differential cell count was performed using
a SYSMEX XT-1800i Vet. (SYSMEX, Kobe Japan).
2.1.2.4. Pharmacokinetic and pharmacodynamic methods. Population
fitting was performed using the Pharsight Phoenix 6.2.0. The
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Fig. 2. Schematic presentation of the design of Case Study 1. Arrows indicate approximate time points of eosinophil assessment.

Fig. 3. Number of eosinophils in individual rats at different times of termination,
given Sephadex (filled circles) or vehicle (open circles). Lines describe the mean
predicted number of eosinophils for rats treated with vehicle (bottom) or Sephadex
(upper), respectively.
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concentration of Sephadex in the lungs was unknown. The time-
course of the challenge function S(Sephadex) was therefore
inferred from biomarker data and modeled as such

SSephadexðtÞ ¼ A1 � Kp1 � t � e�Kp1 �t ð1 : 1Þ

where A1, Kp1 and t stand for the amplitude, rate constant, and time,
respectively, of the stimulatory function resulting from the Sepha-
dex challenge. A separate function due to the stimulatory action
of procedural stress S(Stress) that is also part of the non-drug
vehicle control PD response to Sephadex was modeled as

SStressðtÞ ¼ A2 � Kp2 � t � e�Kp2 �t ð1 : 2Þ

where A2 and Kp2 represent the amplitude and rate constant,
respectively, of the stimulatory function due to procedural stress.
The resulting eosinophil count in bronchoalveolar fluid then
becomes

dR
dt
¼ R0 � kout � ð1þ SSephadexðtÞ þ SStressðtÞÞ � kout � R ð1 : 3Þ

where R, R0 and kout are the number of eosinophils, the predicted
number of eosinophils at the time of challenge and the fractional
turnover rate of eosinophils, respectively. Eq. (1:4) gives the rela-
tionship of the PD biomarker response R (eosinophil number) at dif-
ferent levels of stress/Sephadex challenge.

R ¼ R0 � ð1þ SðSephadexÞ þ SðStressÞÞ ð1 : 4Þ
Table 2
Final Sephadex parameter estimates and their precision (CV%).

Parameter Units Estimate CV%

Kp1 h�1 0.0507 18
Kp2 h�1 0.106 38
A1 337. 23
A2 1.21 20
kout h�1 0.011 26
R0 0.0093
2.1.2.5. Numerics. PhoenixWinNonlin 6.3, with a Gauss–Newton
(Levenberg and Hartley) differential equation solver, was used for
both simulating and regressing data. A constant CV (proportional
error) model was used as weighting function. All biomarker-time
courses were simultaneously regressed, and data from different
study dates were combined in the final analysis.

2.1.3. Results and discussion
The primary objective of this first model was to characterize the

time-profile of the response to Sephadex and subsequently define
the underlying biophase function of the challenger ‘driving’ the
response in eosinophils. To fully understand test compound-
biomarker response, we suggest that both the test compound
exposure and the underlying inflammatory response (biophase
function) driving the eosinophilia be verified experimentally.

In Case Study 1, eosinophilia occurred at similar time-points
following Sephadex challenge as previously reported (Haddad
et al., 2002), peaking at about 48 h and slowly declining 72 h post
5 mg/kg Sephadex i.t. dosing (Fig. 3). The decline in eosinophilia
was much slower than the predicted increase and elimination of
Sephadex (biophase function), and was still measurable up to a
week after challenge (animal ethical constraints prohibited
following the full return of the eosinophilia response to baseline).
Therefore, it was still possible to fit the proposed model
(Eq. (1:3)) to experimental data and obtain parameter estimates
with reasonable precision. The underlying Sephadex biophase
function (Eq. (1:1)) peaked within 24 h of starting the challenge,
in contrast to the maximum eosinophil count (>50 h). The
vehicle-induced stress/handling effect contributed marginally to
the biomarker response (Table 2) (see Fig. 4).

2.2. Case Study 2: compound, challenger and PD response time-courses
known

2.2.1. Rationale
The overall objective in Case Study 2 (Fig. 5), a mouse model, was

to create an acute in vivo challenge model for evaluation of new
human interleukin-1 (IL1) receptor antagonist (IL1Ra) candidates.
Anakinra (Kineret�) is a recombinant, non-glycosylated human IL1Ra

that antagonizes the effects of both ILla and IL1b by blocking the
binding of IL1 to cell surface receptors, and that has protective effects
against several ILl-mediated pathological processes, such as septic
shock, inflammatory bowel disease, and others (Eder, 2009). It was
thus used as a positive benchmarking compound in this study. The
time courses of Anakinra and of the challenger IL1b were evaluated
first. Based on these results, IL6 biomarker response-time courses
were collected, with injections of Anakinra given 30 min before the
challenger IL1b. Individual challenge data were then used as critical
input to assess the individual biomarker response IL6.

2.2.2. Methods
2.2.2.1. Chemicals and reagents. Recombinant mouse IL1b (mIL1b;
R&D systems, 401-ML, 25 lg E. coli derived) and Anakinra



Fig. 4. Experimental (filled circles and error bars and left-hand axis) and model
predicted (thick solid line and left-hand axis) number of eosinophils in rats treated
with Sephadex. The thin black line (peak time tmax at 24 h) is the predicted
Sephadex biophase function (Eq. (1:1) and right hand axis).
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Fig. 6. Semilogarithmic plot of Anakinra concentration–time data of experimental
(symbols) and model predictions (solid lines) after subcutaneous doses of Anakinra
at 0.4 mg kg�1 (solid down-triangles), 2 mg kg�1 (solid up-triangles) and
10 mg kg�1 (solid squares), respectively (mean values, n = 3).
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(Kineret� 100 mg, Anakinra Amgen Europe B.V.), were used as
challenge and intervention compounds, respectively, in the
in vivo challenge mouse model.

2.2.2.2. Animals. Healthy Balb/c mice (7–8 weeks old; males,
Charles River), non-fasted, with a minimum body weight of 20 g,
were used in the IL1b induced cytokine release model with or
without intervention with Anakinra.

2.2.2.3. In vivo model of IL1b-induced cytokine release. A PD model
was designed to characterize the time course of cytokine release
following IL1b challenge, with or without drug intervention.
The mice were randomly divided into four treatment groups, to
receive either one single intraperitoneal (i.p.) dose of Anakinra
0.4 mg kg�1, 2 mg kg�1, or 10 mg kg�1, respectively, or saline, with
a dose volume of 10 mL kg�1. Different doses of Anakinra or saline
were injected 30 min before administration of the challenger IL1b

(133 ng). Mice were sacrificed at each of the following time points:
0, 0.5, 2, 4 and 8 h post IL1b challenge, with groups of three mice
(Fig. 6). Mice were anesthetized with isoflurane (Forene�, Abbott
Scandinavia, Sweden) and blood was collected via heart puncture
for challenge (IL1b), PK (Anakinra) and PD biomarker (IL6) analysis.
The plasma samples were centrifuged at 10,000g for 5 min at 4 �C
and stored in plastic Eppendorf tubes placed on ice during handling
and kept at �80 �C pending quantification.

2.2.2.4. Bioanalysis of test compound. A sandwich ELISA was quali-
fied to measure levels of Anakinra in mouse plasma samples using
the duo set antibody pair from R&D Systems (Abingdon, UK).
Briefly, the capture monoclonal antibody (10 lg mL�1), specific
-0.5h 1h 2h0

Challenge         i.p. IL-1

Blood sampling

Interven�on

β

Fig. 5. Schematic presentation of Case Study 2 design. A range of doses of Anakinra o
challenger IL1b (133 ng). Groups of three mice were sacrificed at each time point (0, 1, 2
for human IL1Ra (Ra = receptor antagonist), was coated onto the
wells of the microtiter plates (Nunc Immunomodule, C8 maxi
immunomodule #145–445101). Samples, including standards
(40–2500 pg mL�1) of known human IL1Ra content, controls, and
unknowns, diluted in 1% BSA in PBS, were added into these wells
and incubated. After washing, a biotinylated goat-anti-human IL1Ra

was used as detecting antibody. Then streptavidin conjugated with
HRP was added and tetramethyl benzidine (TMB) was used as sub-
strate. No cross-reactivity was obtained with mouse IL1Ra. Plasma
matrix effects were observed, and therefore standards/controls
were diluted exactly as the unknown plasma samples. IL6 and
IL1b were analyzed using the Bioplex mouse cytokine assays (Bio-
rad) according to the manufacturer’s instruction.

2.2.2.5. Pharmacokinetic and pharmacodynamic methods. The Ana-
kinra time course Ci in plasma upon repeated dosing was captured
by Eq. (2:1)

Ci ¼ A � ðe�K�t � e�Ka �tÞ ð2 : 1Þ

where A, K and Ka are the kinetic parameters allowing a smooth rep-
resentation of the Anakinra concentration–time course in plasma.
The time course of challenger IL1b in plasma upon repeated dosing
was captured by Eq. (2:2)

CIL1b
¼ S � ðe�K�t � e�Ka �tÞ þ CIL1b

ðbaselineÞ ð2 : 2Þ

where S, K and Ka are the kinetic parameters allowing a smooth rep-
resentation of the IL1b concentration–time course in plasma. The
stimulatory impact of IL1b on the time-course of IL6 is modeled
via a series of transduction steps as follows

dR1
dt ¼ kin � SðCIL1b

Þ � kout � R1

� � �
dRn
dt ¼ kout � Rn�1 � kout � Rn

ð2 : 3Þ

where kin, SðCIL1b
Þ and kout are the turnover rate, the IL1b stimulatory

function and the fractional turnover rate, respectively. The stimula-
tory function SðCIL1b

Þ is mathematically written as a linear function
of the IL1b exposure

SðCIL1b
Þ ¼ 1þ P � ðCIL1b

� CIL1b
ðbaselineÞÞ ð2 : 4Þ
8h4h

r physiological NaCl (control) were injected 30 min before administration of the
, 4 and 8 h) post IL1b challenge.
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where P is a pharmacodynamic parameter (IL6 increase) and DIL1b is
the change from IL1b baseline caused by the IL1b challenge. The
inhibitory action of Anakinra on IL1b is given by Eq. (2:5)

SðCIL1b
;CiÞ ¼ 1þ P � ðCIL1b

� CIL1b
ðbaselineÞÞ � IðCiÞ ð2 : 5Þ

where the inhibitory Anakinra function I(Ci), assumed to impact the
change of IL1b from its baseline value, is given by Eq. (2:6) as

IðCiÞ ¼ 1� Ci

IC50;i þ Ci
ð2 : 6Þ

IC50,i is the potency value of Anakinra at the IL1b receptor. Eq. (2:7)
gives the relationship of the biomarker response R and different lev-
els of drug intervention on the IL1b challenge.

R ¼ R0 � SðCIL1b
;CiÞ

¼ R0 � 1þ P � CIL1b
� CIL1b

ðbaselineÞ
� �

� 1� Ci

IC50;i þ Ci

� �� �
ð2 : 7Þ
2.2.2.6. Numerics. WinNonlin 5.2, with a Runge–Kutta–Fehlberg
differential equation solver, was used for both simulating and
regressing data. A constant CV (proportional error) model was used
as weighting function. All biomarker-time courses were simulta-
neously regressed.

2.2.3. Results and discussion
The objective of Case Study 2 was to set up an acute in vivo chal-

lenge model for kinetic/dynamic evaluation of novel IL1 receptor
antagonists (IL1Ra) according to the design in Fig. 5. A one-compart-
ment pharmacokinetic model was fitted to Anakinra concentra-
tion–time data from each of the three dose groups (Eq. (2:1),
Fig. 6 and Table 3). This served as a smoothing function and input
to Eq. (2:5). The results showed that the time course of cytokine
response (IL6) induced by IL1b challenge in the mouse was sup-
pressed with Anakinra intervention in a dose-dependent manner.
This Case Study contained time courses of test compound (drug),
challenger (IL1b) as well as cytokine response (IL6). Experimental
and model-predicted data were consistent (based on mean values
in the study) for Anakinra concentrations, challenger IL1b and bio-
marker response IL6 (Fig. 7).

The time courses of the challenger IL1b were evaluated as a con-
trol in the three Anakinra dose groups and in the vehicle control
group, respectively (Fig. 7). The time courses of IL1b overlapped
in all challenge treatment groups. IL1b was modeled with a first-
order absorption and elimination process (Eq. (2:2)) using a fixed
baseline value R0 of IL1b (R0 used as a constant and set at 43 ng L�1).
The IL1b parameters were estimated based on mean values from all
for treatment groups with low variability <10% (Table 4).

Finally the time course of the biomarker IL6 was measured at
baseline and after challenges of IL1b with or without Anakinra
intervention (Fig. 8). The inhibitory action by Anakinra was defined
by Eq. (2:5). All dose groups were fitted simultaneously and the
final parameter estimates had an acceptable precision as judged
Table 3
Final Anakinra exposure parameter estimates and their precision (CV%).

Dose (mg kg�1) Parameter Units Estimate CV%

0.4 A lg L�1 507 30
Ka h�1 3.2 30
K h�1 1.0 10

2 A lg L�1 3210 7
Ka h�1 5.8 20
K h�1 1.1 4

10 A lg L�1 13,550 20
Ka h�1 4.5 40
K h�1 1.9 10
from the relative standard deviation (CV < 20%, Table 5). An expo-
sure-dependent IL-6 response was established in the mouse model
with an IC50 of 16 lg L�1 in vivo compared with the IC50 of 2 lg L�1

in vitro (Fredericks et al., 2004).
2.3. Case Study 3: challenger time course unknown

2.3.1. Rationale
Rheumatoid arthritis (RA) is a chronic, immune-mediated

inflammatory disease characterized by joint swelling, synovial tis-
sue inflammation and subsequent damage to the cartilage (Beevart
et al., 2010; Brooks, 2006). The collagen-induced arthritis (CIA)
model (Fig. 9) in the rat is frequently used to mimic RA disease pro-
gression in a short time frame and to test the efficacy of novel anti-
arthritic drug candidates (Hegen et al., 2008).
2.3.2. Methods
2.3.2.1. Chemicals and reagents. Porcine collagen type II in 0.05 M
acetic acid (2 mg mL�1, Chondrex Inc., Redmond, USA) was slowly
emulsified on ice with incomplete Freund’s adjuvant (1:1 v/v) (BD
Difco, Detroit, USA) by adding the collagen drop-wise to the
incomplete Freund’s adjuvant while mixing. The arthritis-inducing
emulsion was prepared immediately before immunization. The
test drug was dissolved at concentrations of 2 mg mL�1 and
6 mg mL�1 in 0.5% carboxymethyl cellulose (Sigma Aldrich)/0.5%
Tween80 (Sigma Aldrich). The dosing solution was prepared fresh
daily on the day of dosing.
2.3.2.2. Animals. Healthy female Lewis rats (Janvier Labs, France)
with a body weight of 140–160 g were used in the CIA studies.
The animals were housed in groups of three and had free access
to rat chow and water.
2.3.2.3. CIA induction and treatment studies. Rats were immunized
with 0.2 mL (200 lg) of the collagen emulsion by intradermal
(i.d.) injection into the base of the tail under isoflurane anesthesia
(Forene�, Abbott Scandinavia, Sweden). A booster injection
(i.d.) with 0.1 mL (100 lg) emulsion was given 7 days after
immunization.

After evaluation of paw edema induction on day 16, 15 CIA rats
with paw size increases of at least 50% in one or two paws were
selected. The rats were randomly assigned to one of three treat-
ment groups, to receive oral doses of 10 mg kg�1 or 30 mg kg�1

of the test drug, or vehicle, respectively, with dose volumes of
5 mL kg�1. The animals were dosed on day 16 post-induction
and were treated daily with test compound until day 34 post-
induction. Serial EDTA blood samples were collected from the
sublingual vein on day 2 (2, 4, 8, 22 h) and day 19 (2, 4, 8, 27 or
28 h) after oral dosing of test compound. The blood samples were
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Fig. 7. Semilogarithmic plot of IL1b concentration–time data of experimental
(symbols) and model predictions (solid lines) after an intraperitoneal challenge
dose of 133 ng IL1b in mice (mean values where n = 3).



Table 4
Final challenge (IL1b) parameter estimates and their precision (CV%).

Parameter Units Estimate CV%

S 6580 2
Ka h�1 7.2 6
K h�1 1.1 1
R0 ng L�1 45.7 1
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Fig. 8. Semilogarithmic plot of IL6 concentration–time data of experimental
(symbols) and model predictions (solid lines) after an intraperitoneal challenge
dose of 133 ng IL1b to mice (mean values where n = 3) and different doses of
Anakinra at 0 mg kg�1 (solid down triangles), 0.4 mg kg�1 (solid up triangles),
2 mg kg�1 (solid squares), 10 mg kg�1 (solid circles), respectively.

Table 5
Final IL6 biomarker parameter estimates and their precision (CV%).

Parameter Units Estimate CV%

kout h�1 4.3 10
IC50 lg L�1 16 20
R0 ng L�1 0.8 4
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stored in plastic Eppendorf tubes, placed on ice during handling
and kept at �20 �C until analysis of the test compound.

2.3.2.4. Drug analysis. The test compound was quantified in rat
blood using a sensitive and specific LC–MS/MS method.

2.3.2.5. Assessment of arthritis swelling score. The incidence and
severity of CIA was evaluated using an arthritis scoring system.
Hind-paw swelling was scored on a composite scale of 0–12 per
rat, evaluating each paw in the metatarsal region with score 0–3
and in the ankle with score 0–3, thus obtaining a maximal score
of 6 per paw. The total arthritis scores were calculated from the
sum of both hind paws, with a maximum possible score of 12 for
each rat. The following scoring system was used: 0 = no detectable
sign of inflammation; 1 = light swollen region; 2 = more obviously
swollen region; 3 = ankylosis or severely swollen region.

2.3.2.6. Pharmacokinetic and pharmacodynamic methods. The time
course in blood upon repeated daily oral dosing of the CIA-modify-
ing test compound was described by Eq. (3:1)
Challenge
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Blood sampling

Interven�on
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i.d. Collagen
(Booster)

7 

Fig. 9. Schematic presentation of the design of Case Study 3. Arthritis was induced by i
orally at three different doses (0 mg kg�1 – i.e. vehicle control – 10 mg kg�1 and 30 mg kg
C ¼ dose � Ka

V � ðKa � KÞ � ðe
�K�t � e�Ka �tÞ ð3 : 1Þ

where V/F, K and Ka are the kinetic parameters allowing a smooth
representation of test compound concentration–time course in
plasma. The stimulatory impact of collagen on the time-course of
paw swelling (swelling scores) was modeled by means of series of
transduction steps as follows

dR1
dt ¼ kout � ðDR� R1Þ
dR2
dt ¼ kout � ðR1 � R2Þ

dR3
dt ¼ kout � ðR2 � R3Þ

dR4
dt ¼ kout � ðR3 � R4Þ

dR
dt ¼ kinðtÞ � R4 � kout � R

9>>>>>>>=
>>>>>>>;

ð3 : 2Þ

where kout is the fractional turnover rate, kin(t) the time-dependent
turnover rate, and the DR parameter, the difference between the
baseline swelling score R0 and Rmax. kin(t), was mathematically
described by Lon et al. (2011) as a function of time which was
dependent on the degree of swelling

dkinðtÞ
dt

¼ �Rdeg � kin ð3 : 3Þ

Rdeg is a first-order rate constant which describes a negative feed-
back loop (Earp et al., 2008a, 2008b). The inhibitory action caused
by the test compound was defined by Eq. (3:4) as

IðCiÞ ¼ 1�
Imax � ICn

50;i

ICn
50;i þ Cn

i

ð3 : 4Þ

where IC50,i is the potency value of the test item at the relevant tar-
get in question. The combined effects of Eqs. 3:2, 3:3, 3:4 are shown
in Eq. (3:5)

dRn

dt
¼ kinðtÞ � Rn�1 � IðCiÞ � kout � Rn ð3 : 5Þ

Eq. (3:6) gives the time-dependent relationship of the PD biomarker
R (swelling score) and different levels of test compound
intervention.

R ¼ kinðtÞ
kout

� IðCiÞ ¼ R0ðtÞ � 1� Imax � Cn
i

ICn
50 þ Cn

i

� �
ð3 : 6Þ

2.3.2.7. Numerics. PhoenixWinNonlin 6.3, with a Gauss–Newton
(Levenberg and Hartley) differential equation solver, was used for
simulating and regressing data. A constant CV (proportional error)
model was used as a weighting function. All swelling score time
courses were simultaneously regressed.

2.3.3. Results and discussion
The objective of Case Study 3 was to set up a quantitative model

to describe the time course of collagen-induced arthritis with and
without test compound intervention in the rat. Following stimula-
tion with collagen the onset of arthritis occurred with a
st compound
o. daily
�l day 34

16 18 34

ntradermal collagen injections on day 0 and day 7. The test drug was administered
�1) over 19 consecutive days starting on day 16 after the collagen challenge started.



Table 6
Kinetic parameter estimates and their precision (CV%).

Parameter Units Estimate CV%

K d�1 2.5 18
V/F L 25 25
Ka d�1 11.7 57

Table 7
Final swelling score parameter estimates and their precision (CV%).

Parameter Units Estimate CV%

R0 Score 0.39 5
Rmax Score 94 10
kout d�1 0.38 5
Rdeg d�1 0.023 3
Imax 0.99 4
IC50 lg L�1 74 7
n 5 9
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12-day delay post-immunization and with a mean peak onset at
day 24.

A one-compartment pharmacokinetic model (Eq. (3:1)) was fit-
ted to the mean test drug concentration–time data of the two dose
groups (Fig. 10 and Table 6). This served as input to the inhibitory
drug-mechanism function Eq. (3:5).

All groups were fitted simultaneously using a 4-transit-com-
partment driven turnover model (Eqs. 3:2, 3:3, 3:4). The final
parameter estimates had good precision (CV < 10%; Table 7). Mean
experimental and model predicted data were consistent for test
compound concentrations and biomarker swelling scores (Figs. 10
and 11). The half-lives of the swelling-score (t1/2kout) and the first-
order degradation parameter Rdeg of the turnover rate (t1/2Rdeg)
were approximately 2 and 30 days, respectively.

The inhibitory effect of the test compound on CIA was charac-
terized with a potency value IC50 of 74 lg L�1 in vivo. Since the effi-
cacy of the test compound was estimated to 0.99, this suggests that
an approximation to unity (1) would be also applicable. The high
Hill-factor n indicates an almost dichotomous concentration–
response relationship.
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2.4. Case Study 4: test compound time-course known

2.4.1. Rationale
LPS-induced cytokine release in cynomolgus monkeys has been

used to test effects of drugs against inflammation in acute disease
conditions (e.g., Mitchell et al., 2010; Wang et al., 2007). We con-
structed a PD biomarker response model based on the time course
of LPS-induced TNFa release with or without inhibitory test com-
pound intervention in this species (Fig. 12).
0 5 10 15 20 25 30 35

Time (day)

Fig. 11. Plot of swelling score (medians) vs. time data of experimental (symbols)
and corresponding model predictions (solid lines) after intradermal challenge with
collagen in rats (n = 5) and different doses of the test compound at 0 mg kg�1

�1 �1
2.4.2. Methods
2.4.2.1. Chemicals and reagents. LPS (E. coli 055:B5, Sigma), Polyeth-
ylene glycol 200 (Fluka), Solutol HS 15 (BASF Pharma solutions),
citric acid anhydrous (Sigma, C-1857) were used.
(vehicle; diamonds), 10 mg kg (up triangles) and 30 mg kg (stars), respectively.
2.4.2.2. Animals. Healthy cynomolgus monkeys aged 10–11 years
(mean body weight of all test animals was 6.6 kg; females: 4.5–
6.2 kg, males: 7.2–9.1 kg) were used in this LPS-induced cytokine
release study with or without the administration of test
compound.

For this PD biomarker study, two groups were independently
treated according to a cross-over design for treatment vs. vehicle,
with treatment sessions separated by several days. Each group
consisted of four cynomolgus monkeys (two males and two
females). The animals were not fasted but no food was supplied
during the first 2 h after LPS administration.
Fig. 10. Semi-logarithmic plot of blood concentration–time data of experimental
(symbols) and model predictions (solid lines) after oral doses of the test compound
at 10 mg kg�1 (up-triangles) and 30 mg kg�1 (stars) respectively (n = 5).
At the testing session, the monkeys received either test com-
pound or vehicle as an initial i.v. bolus followed by a 1 h infusion.
The vehicle was made up from 1 M HCl (2% v/v), polyethylene
glycol 200 (10% v/v), solutol HS 15 (10%, v/v) and 100 mM citrate
buffer pH3 (78%, v/v). The applied volume of the intravenous bolus
was 0.5 mL kg�1 and the infused volume rate was 5 mL kg�1 h�1.
The intravenous bolus and constant-rate infusion doses were
1 mg kg�1 and 1 mg kg�1 h�1 (low dose); 2.9 mg kg�1 and
3.1 mg kg�1 h�1 (high dose); infusion time 1 h. At 0.33 h after
infusion of the test compound began, the animals received an
intravenous LPS challenge at 1 lg kg�1 mL�1 in 0.9% NaCl. Venous
EDTA-blood was sampled at 0, 0.33, 1, 1.33, 2, 4, 7, and 24 h after
treatment began in order to assess test compound exposure, and
at 0, 1, 1.33, 2, 4, 7, and 24 h for the biomarker analysis. Samples
were stored at �20 �C until analysis.

2.4.2.3. Bioanalysis of test compound concentration. The test
compound was quantified in monkey blood by using a sensitive
and specific LC–MS/MS method. Lower limit of quantification
was at 4 nmol L�1 and upper limit of quantification was at
12,000 nmol L�1.

TNFa was quantified by a non-human primate multiplex kit sys-
tem (PRCYTOMAG-40K, Millipore) in cynomolgus monkey EDTA
plasma samples according to the provider‘s instructions, using a
Luminex Magpix Instrument for magnetic bead-based detection
and the MasterPlex QT software (Hitachi Software) for cytokine
quantification. All samples were run in duplicate and quantifica-
tion was based on back-calculation of assay signals to a standard
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Fig. 12. Schematic presentation of the design of Case Study 4. Starting at t0, the test item was administered as an iv-bolus followed by a 1 h intravenous infusion. The LPS
challenge (1 lg kg�1 mL�1 in NaCl) was administered intravenously at 0.33 h. Blood sampling for test compound exposure (down triangles) and TNFa (up triangles) is
indicated.
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curve with 8 points in a range of 2.4–10,000 pg mL�1. In addition,
quality control samples generated by spiking of plasma matrix
with defined analyte concentrations were generated with 6 points
in the range of 10–5000 pg mL�1. Based on the quality control
results, the lower limit of quantification was 10 pg mL�1 and the
upper limit of quantification was 5000 pg mL�1.

2.4.2.4. Pharmacokinetic and pharmacodynamic methods. The time
course of test compound in plasma after the i.v. bolus + constant
rate infusion regimen was captured by a two-compartmental
model

Vc � dCp

dt ¼ Inputbolus þ Inputinfusion � CL � Cp � CLd � ðCP � CtÞ
Vt � dCt

dt ¼ CLd � ðCp � CtÞ

)

ð4 : 1Þ

where Inputbolus and Inputinfusion represent the i.v. bolus dose and i.v.
infusion dose, respectively. Cp denotes test compound concentra-
tion, CL clearance and V volume of the central compartment. Ct

denotes the peripheral concentration, CLd the inter-compartmental
distribution term and Vt the peripheral volume.

The stimulatory impact of LPS on the time-course of TNFa was
described by a turnover model connected to a series of transit
compartments

dR1
dt ¼ kin � SðLPS;CiÞ � kout � R1

� � �
dRn
dt ¼ kout � Rn�1 � kout � Rn

9>=
>; ð4 : 2Þ

where kin is the turnover rate, S(LPS, Ci) the LPS challenge stimula-
tory function with or without test compound intervention, and kout

the fractional turnover rate. S(LPS, Ci) is mathematically written as
an exponential function of time

SðLPS;CiÞ ¼ 1þ a � k0 � t � eð�k0 �tÞ ð4 : 3Þ

where a and k0 are pharmacodynamic parameters of LPS stimulation
used to describe the TNFa response. When test compound is given,
Eq. (4:3) becomes

SðLPS;CiÞ ¼ 1þ A � k0 � t � eð�k0 �tÞ � IðCiÞ
SðLPS;CiÞ ¼ ð1þ A � k0 � t � eð�k0 �tÞÞ � IðCiÞ

)
ð4 : 4Þ

where the inhibitory action of the test compound is assumed to act
on the time course of the stimulatory deviation per se (upper row in
Eq. (4:4)) or on the whole stimulatory function (lower row of Eq.
(4:4)). The inhibitory action caused by the test compound I(Ci) is
defined by Eq. (4:5) as

IðCiÞ ¼ 1� Ci

IC50;i þ Ci
ð4 : 5Þ

where IC50,i is the potency parameter. This relationship assumes a
100% inhibitory action of test compound on the LPS challenge.
Eq. (4:6) gives the relationship of the biomarker response R and dif-
ferent levels of test compound intervention on the LPS challenge.

R ¼ R0 � SðLPS;CiÞ ¼ R0 � 1þ A � k0 � t � eð�k0 �tÞ � 1� Ci
IC50þCi

� �� �
R ¼ R0 � SðLPS;CiÞ ¼ R0 � 1þ A � k0 � t � eð�k0 �tÞ

� �
� 1� Ci

IC50þCi

� �
9>=
>;
ð4 : 6Þ

The larger the test compound exposure, the higher the suppres-
sion of LPS stimulation, and the later the biomarker TNFa peak
occurs.
2.4.2.5. Numerics. PhoenixWinNonlin 6.3, with a Gauss–Newton
(Levenberg and Hartley) differential equation solver, was used for
simulating and regressing data. A constant CV (proportional error)
model was used as weighting function for the kinetic data and a
constant absolute error model for biomarker data. All biomarker-
time courses were simultaneously regressed.
2.4.3. Results and discussion
The objective of Case Study 4 was to quantitatively describe the

inhibitory effect of a test compound on TNFa (the PD biomarker)
after LPS was given as an acute immunological challenge. The test
compound was administered prophylactically as an intravenous
bolus + infusion regimen in order to establish a constant, systemic,
test-compound exposure at the time of challenge (LPS administra-
tion). A two-compartmental pharmacokinetic model was fitted to
the mean test compound concentration–time data from the two
dose groups (Eq. (4:1), Table 8, and Fig. 13). This served as a
smoothing function and input to Eq. (4:5). The TNFa PD response
was characterized by a rapid increase followed by a rapid drop
(Fig. 14, left). The TNFa baseline response was obtained from the
vehicle-treated animals (Fig. 14). A turnover model for TNFa levels
was established incorporating a time-dependent stimulatory func-
tion acting on kin to capture the stimulatory impact of LPS chal-
lenge (Eq. (4:2)). TNFa levels drop below the baseline causing a
rebound-phenomenon if the inhibition is allowed to act on the
baseline R0 and the stimulation elicited by LPS. However, the
rebound is not fully described by the present experimental design.
Additional sampling points between 2 and 4 h would improve the
picture of rebound.

Although the TNFa response was not suppressed completely
with the highest dose, we still assumed that complete suppression
could be produced with higher concentrations of test compound
(Eq. (4:5)). The Goodness-of-fit was improved by introducing a ser-
ies of transit compartments. Multi-phasic TNFa-time courses were
observed after test compound intervention. Some of the time TNFa
measurements also picked up the rebound when the doses of test
compound were higher. The final model parameters of the
rebound- and no-rebound models were determined with reason-
able precision (CV < 30%; Table 9).



Fig. 13. Semilogarithmic plot of concentration–time data of experimental (sym-
bols) and model predictions (solid lines) of drug levels after i.v. bolus + constant i.v.
infusion regimens of test compound at 1 mg kg�1 bolus + 1 mg kg�1 h�1 infusion
(solid up-triangles), or 2.9 mg kg�1 bolus + 3.1 mg kg�1 h�1 infusion (solid squares)
(n = 4).
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An IC50 of 240 nmol L�1 was obtained for the test compound,
which corresponds to a steady state exposure that would decrease
the TNFa-response following LPS stimulus by 50%. These results are
consistent with ex vivo (in vitro) potency results of test compound
using whole blood.

2.5. Case Study 5: challenger identical to PD biomarker, time-course
known

2.5.1. Rationale
The oral glucose tolerance test (OGTT) model is widely used in

drug assessment for effects on glucose handling and insulin sensi-
tivity/resistance in diabetic conditions. Rodent species are typically
used for screening and selecting novel agents that improve glucose
handling in diabetic conditions, and PD readouts are insulin and
glucose.

2.5.2. Methods
2.5.2.1. Chemicals and reagents. Test compound Z used in the study
was synthesized in-house at AstraZeneca. All solvents and chemi-
cals used were reagent grade commercially available.

2.5.2.2. Experimental procedure. Forty-two healthy C57BL6/6Jax
mice (9–10 weeks old; males, in-house bred, based on founding
pairs from the Jax Strater Colony) were housed in groups on a nor-
mal light cycle (lights on 6.00 am–6.00 pm) and allowed ad libitum
access to standard chow (SDS RM1 diet). Animals were allowed to
acclimatize for a minimum of 1 week following arrival to the
experimental unit and were randomly assigned to different groups
based on their body weight. Mice were fasted for 16 h before glu-
cose administration. A tail-prick blood sample was taken at base-
line to allow Accu-chek measurement of glucose before
compound administration. Mice were then dosed orally with vehi-
cle (HPMC/Tween) or either 10, 30 or 100 mg/kg of compound Z. At
30 min after the compound dose was given, a glucose load of
2 g kg�1 was administered by oral gavage. In conscious mice, tail
prick samples for blood glucose measurement (Accu-chek) were
then taken at 0, 10, 25, 40, 60, 90 min post glucose load. Blood sam-
ples of 5 lL were taken at 0, 40, and 90 min post glucose dose for
test compound exposure measurements. At the end of the experi-
ment, all mice were euthanized using rising CO2 and cervical dislo-
cation, and a terminal cardiac blood sample was obtained for
analysis of compound exposure. All animal procedures were
approved by the British Home Office Animal Scientific Procedures
Act 1986. Fig. 15 shows a schematic representation of the design
elements.

2.5.2.3. Bioanalysis of test compound concentration. Blood samples
were protein precipitated with ice-cold acetonitrile (Sigma–
Aldrich) containing a generic internal standard compound from
the AstraZeneca compound library. The samples were then mixed
and centrifuged at 4500g for 10 min. A sample of the supernatant
(50 lL) was removed and diluted with 300 lL of water prior to
injection (50 lL) onto the LC–MS/MS system. Samples were ana-
lyzed on a TSQ Quantum Vantage mass spectrometer (ThermoFish-
er Scientific, Hemel Hempstead, UK). Chromatography was
Table 8
Final kinetic parameter estimates and their precision (CV%).

Parameter Units Estimate CV%

CL L h�1 kg�1 2.2 10
CLd L h�1 kg�1 0.3 28
V L kg�1 2.3 17
Vt L kg�1 4.8 51
performed on a Max-RP (50 mm � 2.1 mm ID, 5 lm) HPLC column
(Phenomenex, Macclesfield, UK) with a mobile phase consisting of
water containing 0.1% formic acid and methanol containing 0.1%
formic acid. After analysis, the results were quantified using
QuickCalc™ software (Gubb Inc., Alpharetta, Georgia, USA) by back
calculation against the relevant calibration curve. Free test-
compound concentrations were calculated based on measured
concentrations in blood and corrected using a constant free
fraction fu. Free fraction values were generated in house in vitro
using previously published methodology.

2.5.2.4. Pharmacokinetic and pharmacodynamic methods. The aver-
age of the measured drug concentrations at each time point (0,
40 and 90 min post glucose) within each group (n = 10 mice per
time point and dose level) was calculated. A table function was
used to interpolate all test-compound exposure levels between
the sampled concentrations. These drug concentrations were then
used as covariates in the pharmacodynamic model (Eq. (5:1)).

A turnover model was selected to describe the time course of
the glucose biomarker.

dR
dt
¼ InputOGTT þ kin � kout � ðSðC;RÞ þ RÞ ð5 : 1Þ

where kin, S(C, R) and kout are the turnover rate, the stimulatory
function of test compound and fractional turnover rate, respec-
tively. InputOGTT represents the glucose first-order input function
following a 2 g kg�1 oral dose of glucose.

InputOGTT ¼
Ka � DoseOGTT

V
� e�Ka �t ð5 : 2Þ

where Ka is the glucose absorption rate constant, DoseOGTT is the glu-
cose load (2 g kg�1 = 11 mmol kg�1) and V is the volume of distribu-
tion of glucose. The stimulatory function of S(C, R) is
mathematically described as a logarithmic function of the test com-
pound concentrations but also proportional to the change (R � R0)
from baseline R0 in blood glucose concentration.

SðC;RÞ ¼ m � logð1þ CÞ � ðR� R0Þ ð5 : 3Þ

The m parameter is the slope of the log-linear portion of the concen-
tration–response curve.

Eq. (5:4) gives the relationship of the biomarker response R and
different levels of test compound intervention on the glucose
challenge.

R ¼ R0 �
1

m � logð1þ CÞ � ðR� R0Þ
ð5 : 4Þ



Fig. 14. Left: Semilogarithmic plots of TNFa concentration–time data of experimental (symbols) and rebound model predictions (solid lines) after an intravenous challenge
dose of 1 lg kg�1 mL�1 in NaCl in cynomolgus monkeys (n = 8 in vehicle group and n = 4 in treatment groups) and different doses of test item at 0 mg kg�1 (vehicle; open
circles, n = 8), 1 mg kg�1 bolus followed by a 1 mg kg�1 h�1 infusion (solid up triangles), 2.9 mg kg�1 bolus followed by a 3.1 mg kg�1 h�1 infusion (solid squares). Right: Same
data fitted with a basic turnover model that does not allow a rebound.

Table 9
Final TNFa (biomarker) parameter estimates and their relative standard deviation
(CV%).

Parameter Units Rebound model Basic turnover

Estimate CV% Estimate CV%

kout pg mL�1 h�1 10.7 2 10.0 2
R0 pg mL�1 40.7 19 34.4 18
k0 h�1 8.4 5 14.8 5
A 390 23 4317 25
IC50 nM 240 18 145 28
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2.5.2.5. Numerics. Phoenix WinNonlin 6.3, with a matrix exponent
differential equation solver, was used to fit the data. An additive
error model was used. Plasma test compound concentration was
used as a covariate and all time-courses were simultaneously
regressed.
2.5.3. Results and discussion
The oral glucose tolerance test (OGTT) is a commonly used chal-

lenge design in early discovery of new experimental compounds
for the treatment of type II diabetes. Blood glucose concentrations
are frequently monitored for 90 min following an oral dose of glu-
cose. Intervention with a test compound reduces the extent of glu-
cose exposure compared to control animals. In this Case Study, the
test compound was shown to reverse blood glucose to normal con-
centrations in a dose-dependent manner in mice (Fig. 16 and
Table 10).

The regressed turnover model was able to simultaneously
describe the glucose-time course following different doses of the
glucose-lowering test compound in the blood in the OGTT study.
Results of the regressions are shown in Fig. 16 and Table 11. Gen-
erally, the parameters had good precision. A peak-shift towards the
left was seen in glucose biomarker response with increasing doses
of test compound since a linear drug-stimulatory function was act-
ing on the loss of response.
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Fig. 15. Schematic representation of the design of Case Study 5. A range of test-c
administration of the glucose challenge (n = 10–12 animals per group).
The action of the test compound is assumed to be proportional
to the blood glucose levels above baseline and not to the absolute
blood glucose concentration per se. The intended mechanism of the
compound’s action is compatible with a lack of hypoglycemia, and
indeed hypoglycemia has not yet been observed with this com-
pound in this or other experiments.
3. Discussion

We have described and summarized in vivo PK/PD modeling in
5 Case Studies that used drug challenge designs across therapeutic
areas, each with varying characteristics. These Case Studies thus
differ with respect to information content, and suggestions are
given how quantitative PK/PD modeling may be rationally
approached in a particular situation. Pivotal findings in each of
the Case Studies are discussed below and summarized in Table 12,
including recommendations about the corresponding design
elements.

3.1. Case Study 1 – Sephadex-induced eosinophilia

The Sephadex challenge treatment was clearly effective at trig-
gering the PD response, at a level well above the (minor) stress/
handling-induced changes in the control (vehicle) group (Fig. 3).
Thus, whereas the inter-individual variability in eosinophil num-
bers is large, the separation between Sephadex- (Eq. (1:1)) and
vehicle- (Eq. (1:2)) treated groups was nonetheless demonstrated
(Table 2). The question may still arise whether the large variation
in eosinophil response is due to variable Sephadex time-courses
across different animals. The two-parameter Sephadex function
(Eq. (1:1)) had acceptable parameter precision in A1 and Kp1. How-
ever, possibly two or more Sephadex doses combined with full
challenger- and biomarker-time courses would further improve
the robustness of these estimates. In addition, if eosinophil time
courses after test compound intervention can be appended to the
min 60 min 90 min

ompound doses or vehicle (HPMC/Tween control) were injected 30 min before



Fig. 16. Mean blood glucose and model prediction in mice OGTT after a single oral
dose of either vehicle control (circles) or test compound treatment at 10 (triangles),
30 (squares) or 100 (diamonds) mg kg�1, administered 30 min before a 2 g kg�1 oral
dose of glucose challenge (n = 10–12 mice per group; data shown are means ± SEM).

Table 11
Final model parameters and their precision (CV%).

Parameter Units Estimate CV%

Ka min�1 0.053 17
V kg�1 0.36 20
R0 mM 9.2 2
kout min�1 0.062 18
m lM�1 0.48 13
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regression, the parameter precision will increase further and allow
separation of test compound (IC50) and system (kout) parameters.
The same total number of animals (Fig. 3) can then be better quan-
titatively utilized if each animal is given its individual dose and the
samples are then spread out in time (to cover the return back to
baseline); the data can then be modeled.

3.2. Case Study 2 – antagonism of IL1b-induced IL6 elevation

Case Study 2 showed that the time course of cytokine response
(IL6) induced by IL1b challenge was suppressed by pretreatment
intervention using Anakinra. The compound also reversed the
IL1b induced cytokine IL6 elevation in the mouse in a dose-depen-
dent manner.

This Case Study is the most complete design of the five exam-
ples discussed. It contained time courses of test compound (drug)
and challenger (IL1b), as well as cytokine response (IL6). The results
from this set-up updated with higher resolution data on IL6

response to new IL1 antagonists, combined with a mixed-effects
modeling approach, can be expected to provide a good platform
for optimization and selection of novel IL1 receptor antagonist can-
didates. The turnover properties (system) and challenge profile
(system) were separated from the test compound properties
(potency, etc.), hence allowing a better translation of preclinical
data from different experiments and compounds to humans.

3.3. Case Study 3 – reversal of collagen-induced arthritis (CIA)

For Case Study 3, we developed a mathematical model of the
CIA progression. In the absence of information of the challenger
(Freund’s adjuvant) time-course dynamics, swelling scores over
time, with and without the intervention of the test compound,
Table 10
Mean compound concentration in mouse OGTT after a single oral dose of either vehicle (co
2 g kg�1 oral challenge dose of glucose (N = 10 mice per group, SEM = standard error of th

Time, post glucose load (min) Test compound concentration in blood

10 mg kg�1

Mean SEM

0 0.949 0.106
40 0.810 0.100
90 0.535 0.093
were used to describe arthritis progression. A one-compartment
model that served as a smoothing function and input to the inhib-
itory drug mechanism function of the PD biomarker model
described the exposure profiles of the test compound after oral
dosing.

The response and progression of the PD biomarker paw-swell-
ing was described by a modified version of a previously published
turnover model (inhibition of production) for paw edema in
arthritic rats (Lon et al., 2011). The inflammatory process is very
dynamic and changes in the inflammatory stages may vary from
day to day; thus, it is difficult to follow the precise disease devel-
opment in the joints of each study animal. To capture the overall
delay of onset of the PD biomarker response, we combined the
turnover model with a series of four transit compartments. Others
have incorporated up to 19 transduction steps to account for the
time delay of paw swelling and five additional transduction steps
to account for the time delay of natural remission (Liu et al.,
2013). Our data, however, suggest that a 4-step transit model
would suffice. The natural remission of CIA, which has been
observed in animal models (Luross and Williams, 2001), was cap-
tured by the parameter Rdeg. This parameter represents a first-
order decline (t1/2 � 30 days) of the turnover rate kin (Earp et al.,
2008a, 2008b; Lon et al., 2011), suggesting that an extended obser-
vational period may be needed. The bi-phasic decline in the paw-
swelling suggests other model structures, including removal of
the time-dependent attenuation of certain parameters. The turn-
over rate was mathematically described as a function of time that
was dependent on the degree of swelling. The time-dependent
change in either the synthesis or elimination rates was introduced
by Post et al. (2005). It is therefore possible that a more mechanis-
tically based approach to model these data that also captures mul-
tiple challenges over time may help further refining modeling in
this setting.

Exposure (test compound or vehicle control) and biomarker
(swelling score) data were obtained simultaneously from all ani-
mals. Although the model generated acceptable predictions for
swelling-score time profiles and reasonable parameter estimates,
the IC50 may be biased because exposure concentration data were
available only after a single challenge dose.

From a PD point-of-view, it should be noted that the response
readout in this Case is based on an arbitrary summed scoring scale
with a maximum possible number of 12. This in turn implies that a
drug-induced reduction of the PD response from, say, 10 to 5, does
not necessarily mean that the CIA process is inhibited by 50% at the
actual target level, only that the qualitatively scored readout is
ntrol), or test compound given at 10, 30 or 100 mg kg�1, administered 30 min before a
e mean).

(lM)

30 mg kg�1 100 mg kg�1

Mean SEM Mean SEM

3.172 0.235 8.377 0.789
3.032 0.205 9.353 0.394
2.131 0.221 6.813 0.520



Table 12
Summary of major findings and suggested improvements for future designs.

Case
Study

Points to consider Major findings Suggested improvements of design elements

1 Baseline response � Needs to reduce PD response variability � Complete time course of PD response
Time delay � Information about challenger may explain some PD response

variability
� Time-series of test compound and challenger at P2 dose levels

to validate PD response variability and improve the precision of
model parameters

� Expected shift in peak-time with intervention of test compound
2 Baseline response � Includes challenger, test compound, and PD response time

courses
� Improved resolution of PD response at Cmax & tmax

Time delay (peak-shift) � High parameter precision � Expected shift in peak-time with intervention of test compound
Transduction steps � Expected shift in peak-time with intervention of test compound

3 Baseline response � PD response followed towards return to baseline which means
improved predictions

� Include challenger time-course

Time delay (peak-shift) � High parameter precision � Run P1 dose of challenger
Transduction steps � Expected shift in peak-time with intervention of test compound

4 No baseline response � Extended sampling of PD response � Include challenger time-course
Time delay (peak-shift) � Reasonable parameter precision � Improve sampling at rebound
Transduction steps � Expected shift in peak-time with intervention of test compound � Run P1 dose of challenger
Slope differences
Rebound

5 Baseline response � OGTT model; challenger = PD response marker � Run P1 glucose challenge dose
Time delay � Reasonable parameter precision
Peak-shift � Observed shift in peak-time with intervention of test compound
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halved. Infrared thermography (to monitor changes in skin tem-
perature) has been proposed as a refinement of the model, poten-
tially conferring a more sensitive and objective method to assess
degree of inflammation and effects of putative therapeutic agents
(Jasemian et al., 2011).

However, the turnover model captured the current PD bio-
marker data reasonably. It could therefore serve as a basis for
future studies where the inclusion of biomarkers would give addi-
tional insights and allow a more quantitative assessment of dis-
ease-modifying drugs in the rat CIA model (Earp et al., 2008a,
2008b, 2009).

3.4. Case Study 4 – prevention of LPS-induced increases in TNFa

Acute cytokine release models provide an example of challenge
tests where the stimulus elicits a rapid but transient kinetic of a
biomarker response (Wollenberg et al., 1993). These types of mod-
els in rodents are often used as initial in vivo PD models for
immune-modulating agents in drug discovery (Beck et al., 2002;
Zhang et al., 2004).

In Case Study 4, cynomolgus monkeys were challenged by
intravenous LPS administration and changes in the pro-inflamma-
tory cytokine TNFa were studied in the presence or absence of pro-
phylactic infusion of an inhibitory test compound. No data on the
LPS challenger kinetics were available (Remick, 1995; Malerich
and Elston, 2006). The turnover data of TNFa biomarker response
after LPS challenge in the vehicle-treated animals was described
using a model with a time-dependent stimulatory function acting
on the turnover rate kin. A number of transit compartments were
incorporated to adequately capture the rapid changes in TNFa
kinetics after a delayed onset of action. Acute cytokine release
has previously been modeled with discontinuous functions, allow-
ing the induced formation of TNFa to take place only for a defined
period (Gozzi et al., 1999; Chakraborty et al., 2005; Wyska, 2010).
In our example, we propose a continuous model using a stimula-
tory function coupled to transit compartments.

Physiologically, there is no observable baseline concentration of
TNFa in blood. The cytokine is only released into blood from acti-
vated monocytes in response to an immunological stimulus
(Malerich and Elston, 2006). In this Case Study, already at t0, TNFa
was quantifiable in the systemic circulation of the test animal and
levels returned to the initial values at 24 h post stimulus, which is
incorporated into the suggested model, and R0 reflects a baseline
concentration of about 40 pg mL�1.

The drug-induced inhibition acts on the LPS stimulatory func-
tion S(LPS). Hence, predicted TNFa levels do not decrease below
R0. The IC50 value describes the steady-state concentration of the
test item that would lead to a 50% reduction in the TNFa response
following LPS challenge.

3.5. Case Study 5 – drug-induced effects on glucose handling (OGTT
model)

OGTT is a commonly used test carried out in mice; it is consid-
ered the most physiological test, since it mimics the normal route
of administration of dietary glucose in man (Pacini et al., 2013).
Data generated using this model have been analyzed in several dif-
ferent ways to obtain information regarding insulin sensitivity, but
analyses commonly focus on the area under the glucose concentra-
tion–time curves (Pacini et al., 2005).

Glucose and insulin dynamics have previously been analyzed
using turnover models after simultaneous administration of com-
pounds that alter glucose homeostasis in rodents (Lima et al.,
2004; Gao and Jusko, 2012; Jin and Jusko, 2009). However, in these
situations, no exogenous glucose challenge has been given. There-
fore, those models cannot be directly applied to OGTT data where
the baseline changes as a result of the challenge.

In humans, an integrated glucose-insulin model has been used
to describe OGTT data (Jauslin et al., 2007; Silber et al., 2010).
We took glucose absorption into account using either a transit
compartment model or an empirical model with a series of zero
order inputs. Additionally, we propose a multi-compartment
model for glucose distribution in the body coupled to a more com-
plex control mechanism of glucose-insulin.

In Case Study 5, the glucose absorption was assumed to follow a
1st order process. We proposed a simplified acute turnover model
in which the expected effect of insulin on blood glucose control is
described as clearance of blood glucose concentrations above base-
line. This was done in light of no available insulin data (due to
blood volumes) and only limited data for glucose measurements.
Despite these limitations, the acute effect model successfully
described the magnitude and duration of the blood glucose turn-
over after administration of vehicle control and test compound in
an OGTT setting.



Table 13
Comparisons of models.

Case Study Action Pharmacodynamic relationship PD behavior

1 Stimulation of kin R = R0 � (1 + S(Sephadex) + S(Stress)) Linear as long as drug action is linear
2 Nonlinear stimulation of kin R ¼ R0 � ð1þ P � ðCIL1b

� CIL1b
ðbaselineÞÞ � ð1� Ci

IC50;iþCi
ÞÞ Nonlinear drug mechanism function

3 Nonlinear stimulation of kin R ¼ R0ðtÞ � ð1� Imax �Cn
i

ICn
50þCn

i
Þ Nonlinear drug mechanism function

4 Nonlinear stimulation of kin R ¼ R0 � SðtÞ ¼ R0 � ð1þ A � k0 � t � eð�k0 �tÞ � ð1� Ci
IC50þCi

ÞÞ
R ¼ R0 � SðtÞ ¼ R0 � ð1þ A � k0 � t � eð�k0 �tÞÞ � ð1� Ci

IC50þCi
Þ

Nonlinear drug mechanism function

5 Log-linear stimulation of kout R ¼ R0 � 1
m�logð1þCÞ�ðR�R0Þ

Nonlinear since drug acts on kout
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The inhibitory ‘drug-mechanism function’ on blood glucose was
assumed to follow a log relationship rather than a more compli-
cated but biologically mechanistic model, due to the observational
range of concentration–response data. This obviously limits the
ability of this model to predict effects beyond the test compound
exposures and blood glucose concentrations used in the Study.
Another improvement would be to describe the plasma test com-
pound concentrations with a mathematical function, rather than
as a table function in the analysis. This would facilitate the ability
to use the proposed model to predict effects at alternative dosing
schedules.

The models in the Case Studies are compared and described
mathematically in Table 13. All of them suggest a peak-shift to
the left in PD biomarker response with increasing doses of test
compound. This is due to the nonlinear drug mechanism functions
(Case Studies 2–4) or the log-linear stimulatory function on kout

(Case Study 5).
4. General remarks and considerations

As evident by our model assessments, optimal study design
requires premeditated integration of several elements to fit model-
ing input requirements. Thus, while the basics of choosing and
characterizing the actual model best suited for screening and
translatable predictions (e.g., PD ‘disease’ biomarker validation
across species) are obviously crucial in any context, careful atten-
tion should also be paid to relevant (drug and challenger) PK and
PD aspects, and what might influence these in the particular model
selected (Gabrielsson and Green, 2009; Gabrielsson et al., 2009;
Gabrielsson and Weiner, 2010; Gabrielsson and Hjorth, 2012).
For example, pathophysiological alterations in a particular disease
model may influence PK (e.g., absorption, distribution, elimination,
etc.) as well as PD response (e.g., target sensitivity, transduction
Fig. 17. Schematic presentation of the pivotal characteristics of PD data. Data contain
response, peak-shift with increasing doses t, saturation at the highest dose u and dif
response-time data were available after both intravenous (dashed lines) and subcutan
parameter. See also Peletier et al., 2005; Gabrielsson and Peletier (2013).
and/or downstream processes, compensatory adjustments, etc.)
variables, thereby affecting the corresponding parameter readout
and modeling approach (cf., e.g., Case Studies 3 and 4). As long as
the dynamics of such a process are under reasonable control the
aforementioned complexities should not present a problem, but
serves to illustrate the general principle of working with ade-
quately controlled, robust models to optimize PK/PD modeling
and subsequent predictions for new candidate drugs. It also fol-
lows that not only should the PD response time-course be moni-
tored and defined in the disease model under study, but also PK
and challenger time-courses should be run under identical
conditions.

Furthermore, the PD response readout may be more or less dis-
tant from the actual target intended for drug intervention, with
one or several steps in between the primary action and the actual
PD response biomarker display. This, however, does not preclude
usefulness of data even from in vivo scoring models (cf. Case Study
3) or other comparable situations (e.g., body weight, motor activity,
specific behavioral alterations), when modeling the PK/PD relation
– like in Case Study 3. Similarly, in all of the Cases described, the
time courses also reflect challenger and drug levels taken at a dis-
tance from the actual biomatrix of target and/or therapeutic inter-
est. Thus, while systemic plasma and blood levels are clearly the
most easily accessible substitute compartments and clearly useful
to the predictions in our Case Studies, it may well be that a more
precise PK/PD understanding could have been gained based on
knowledge and modeling of the levels in targeted cells, tissues or
specific vascular beds (e.g., lung, subcutaneous tissue, liver).

Finally, although not specifically presented with data in the cur-
rent set of Case Studies, there are obviously multiple examples of
challenge test situations for different models of CNS dysfunction
and allied processes. In these instances, the PD biomarker
output may be neurochemical, electrophysiological, autonomic,
neuroendocrine, molecular imaging, or – more often – typically a
a baseline r, time-delay between peak exposure s (not measured) and peak of
ferent slopes of decline post-peak, depending on route of administration v. Since
eous (solid lines) dosing, the biophase availability could be estimated as a model
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behavioral readout, to mention a few. Examples include models to
screen for novel agents for putative antipsychotic action (e.g.,
reversal of D-amphetamine single neuron and motor effects;
Haracz et al., 1993), for reversal of cognitive dysfunction (e.g.,
scopolamine-induced memory impairment; Buccafusco, 2009),
for assessing analgetic drug effects (e.g., thermic, mechanical,
inflammatory, etc., pain models; Berge, 2011), pro/anti-convulsive
properties (e.g., pentylenetetrazole-induced seizures; Löscher,
2009) for optimization of treatment protocols and/or exploration
of specific disease processes (e.g., imaging methods like PET; Lee
and Farde, 2006), and in connection with various types of physio-
logical states (e.g., diet- or stress-induced changes in food intake or
anxiety-like behavior, respectively; Ravinet Trillou et al., 2003;
Jaggi et al., 2011). While outside the scope of our report, for a
broader discussion on animal models of CNS disease/dysfunction
in general, including limitations and suggestions for the future,
we refer the interested reader to Markou et al. (2009). From the
PK/PD modeling point-of-view, however, a similar reasoning and
rationale could be applied compared to our Case Studies.
5. Conclusions

In presenting our five Case Studies, we sought to exemplify var-
ious experimental designs and how they can be improved to better
guide compound selection. Thus, our goal was not to present an in-
depth analysis of a specific mathematical model. For this, we refer
the reader to the original references. Instead, we intended to illus-
trate to readers the range of conditions an investigator may
encounter in a typical population of normal or diseased animals,
and necessary points to consider in experimental design. For
instance, in our experience, it is much more informative to obtain
a full PD biomarker response-time profile at two or more doses of a
particular compound, rather than stacking up cohorts of animals at
single time points. We thus argue that the design, analysis and
communication of challenge experiments needs a totally different
mind-set than has been the case in hypothesis-test driven tradi-
tional designs. A quantitative approach similar to the one we advo-
cate for pre-clinical studies has been elegantly advanced by
Sheiner (1991) from a drug developmental point of view.

To enhance predictive power, a modeler has to elaborate on the
pattern of onset, intensity and duration of PD response. We have
discussed some principal aspects of modeling PD readout data,
such as the influence of baseline (1 in Fig. 17), time-delays (2),
transduction (3), peak-shifts (4) and saturation or lack of satura-
tion (5). These features are schematically illustrated in Fig. 17
below. We also highlighted the importance of actually measuring
the challenger (e.g., IL1b in Case Study 2) rather than making indi-
rect inferences about its behavior by deconvoluting the PD bio-
marker response. For further information about the latter
approach on mixture data analyses see Gabrielsson and Peletier
(2013).

If no prior information is available about the PD mechanism of
action, model building may start with a few points of insight on the
proposed PD response biomarker, such as baseline behavior, time-
delays, peak-shifts with increasing doses, saturation of response at
higher doses and decline towards baseline (cf., Fig. 17). For optimal
outcome, however, study data should include monitoring of
directly target-related and translatable biomarkers across several
species, concomitant with measurements of plasma drug concen-
trations across time- and dose ranges, plasma protein binding of
the drug ex vivo (or, if not possible, in vitro), and knowledge of
the presence and activity of potential active metabolites that
may influence the results (Gabrielsson and Peletier, 2013;
Gabrielsson et al., 2014).
Typically, time-series analyses of challenger- and biomarker-
time data are necessary when an accurate and precise estimate
of the test compound pharmacodynamic properties is desired. Ero-
sion of data or the single-point assessment of drug action after a
challenge test should generally be avoided, particularly in situa-
tions where one expects time-curve shifts, tolerance/rebound,
impact of disease or hormetic (Calabrese, 2013) concentration–
response relationships to occur.
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