

Comparison of Code – Defining PK Model		
NONMEM	NLME	
\$PROBLEM TWO COMPARTMENTAL MODEL WITH ORAL BOLUS CL & V DEPENDS ON DISEASE STATE	test(Model Name can be entered here) { Model statements } # Comment can be added here	
\$INPUT ID TIME DISEASESTATE DV AMT MDV \$DATA NONMEM_2C_ORAL_BOLUS_DISEASE STATE_EFFECT_ON_V_CL.csv IGNORE=C	No typing of file name and setting path locations are required. Import the Input data into Data folder in Phoenix project Only Input data mapping required	
; DEFINE THE PK MODEL AND ABSORPTION COMPARTMENT	# Define PK model type with dosing point, parameterization and absorption type	
\$SUBROUTINES ADVAN4 TRANS4	cfMicro(A1, Cl / V, Cl2 / V, Cl2 / V2, first = (Aa = Ka))	
CERTARA © Copyright 2018 Certara All rights reserved. 6		

NONMEM	NLME
; Q = INTERCOMPARTME CLEARANCE	NTAL
TVCL2 = THETA(5)	
Q = TVCL2	stparm(Cl2 = tvCl2)
; SCALE PARAMETERS	
S2=V2	C = A1/V Defining the scaling parameter can be incorporated here. Expected to have Dose Information in the same mass units as defined in Concentration mass units.

NONMEM	NLME
; =====SETUP INITIAL VALUES FOR THETA AND OMEGA ===	
\$THETA	
(0, 1) ;TVKA	fixef(tvKa= c(, 1,))
(0, 50) ;TVV	fixef(tvV= c(, 50,))
(0, 50) ;TVV2	fixef($tvV2 = c(, 50,))$
(0, 5);TVCL	fixef(tvCl= c(, 5,))
(0, 5);TVCL2	fixef(tvCl2 = c(, 5,))
1;DVDISEASESTATE1	fixef(dVddiseasestate1(enable=c(0)) = c(, 1,))
-1 ;DVDISEASESTATE2	fixef(dVddiseasestate2(enable=c(0)) = c(, -1,))
0.5 ;DCLDISEASESTATE1	fixef(dClddiseasestate1(enable=c(1)) = c(, 0.5,))
-0.5 ;DCLDISEASESTATE2	fixef(dClddiseasestate2(enable=c(1)) = c(, -0.5,))

Pharmacometrics: Phoenix as The Full package

Textual Mode: Similar to NONMEM control stream

- Now, we will go through an example Population PK model with Categorical Covariate that have been generated using both NONMEM and Phoenix NLME
- In this each model, we will explain the PML code and how we could often generated the PML using the interface (build-in, graphical or both)

CERTARA

© Considit 2018 Cedara All rights resonand

15

Two Compartment, Oral Dosing, Multiple Error model and with Categorical Covariates with FOCE Method

- The model is a 2 compartment model with Oral Bolus and clearance parametrization
- · The error model assumes multiplicative error
- Provide Input data and Control file for NONMEM Run
- · For NLME do the following
 - · Structural model selection
 - · Error model selection
 - · Fixed effects
 - Covariate relationship: diseasestate is a 3 level covariate with value 0, 1 or 2 linked to both V and Cl
 - · Random effects
 - Engine settings and mode (fitting versus simulation)
 - Mapping Input data

CERTARA
© Copyright 2018 Certara All rights reserved. 16

Set up and Run NONMEM & Phoenix NLME model: - 2-Compartment Oral - Disease State as covariate on CL and Volume - Estimation methods: FOCE Interaction vs FOCE ELS > Postprocessed the NONMEM results and compared them with the NLME results - Only small differences

CERTARA O

